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SYMMETRIC POWERS OF COMPLETE MODULES OVER A

TWO-DIMENSIONAL REGULAR LOCAL RING

DANIEL KATZ AND VIJAY KODIYALAM

Abstract. Let (R,m) be a two-dimensional regular local ring with infinite
residue field. For a finitely generated, torsion-free R-module A, write An
for the nth symmetric power of A, mod torsion. We study the modules An,
n ≥ 1, when A is complete (i.e., integrally closed). In particular, we show that
B · A = A2, for any minimal reduction B ⊆ A and that the ring ⊕n≥1An is
Cohen-Macaulay.

Introduction

The theory of complete ideals in two-dimensional regular local rings was initiated
by Zariski to study linear systems on non-singular surfaces. In [Z] and in the appen-
dix of [ZS], Zariski showed that the product of complete ideals is complete and that
any complete ideal is uniquely expressible as a product of simple complete ideals.
(Huneke’s treatment [H] provides an excellent introduction to the subject.) These
results have served as the springboard for further investigations into the properties
of complete ideals. For example, Lipman has shown that Zariski’s results hold for
rational surface singularities (cf. [L]) and Cutkosky has characterized surface sin-
gularities for which products of complete ideals are complete and for which unique
factorization holds (cf. [C1] and [C2]). In [HS] it is shown that complete ideals have
many desirable analytic properties, e.g., their Rees algebras are Cohen-Macaulay.

Recently the second author extended part of Zariski’s theory to torsion-free
modules. Let (R,m) be a two-dimensional regular local ring and suppose that A
and B are finitely generated torsion-free R-modules. The main result of [Ko] states
that if A and B are complete (see the definitions below), then so is their “product”
A · B, where A · B denotes the tensor product of A and B modulo its R-torsion.
In this paper, we would like to continue in a like manner by studying symmetric
powers, mod torsion, of complete modules. If A is a finitely generated torsion-free
R-module then A embeds canonically into a free R-module F (the “double dual”
of A) so that the quotient has finite length. For each n ≥ 1, let Fn denote the nth
symmetric power of F and An denote the image of the nth symmetric power of A
in Fn. Thus An is the nth symmetric power of A, modulo its R torsion. Let I
denote the ideal of maximal minors of the matrix whose columns generate A and
write λR(Fn/An) for the length of Fn/An. The following theorem is the main result
of this paper.
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Theorem 4.1. Let (R,m) be a two-dimensional regular local ring and A a finitely
generated complete, torsion-free R-module. Set r := rank(A). The following condi-
tions hold :

(i) BA = A2 for every minimal reduction B ⊆ A.
(ii) IB = IA for every minimal reduction B ⊆ A.
(iii) The ring

⊕
n≥0An is Cohen-Macaulay.

(iv) The ring
⊕

n≥0An/IAn is Cohen-Macaulay.

(v) λR(Fn+1/An+1) = λR(F/B) ·
(
n+r+1
r+1

)
− λR(A/B) ·

(
n+r
r

)
, for all n ≥ 0 and

every minimal reduction B ⊆ A.

In the statement of the theorem, BA denotes the canonical image of B ⊗R A
in F2. Note that conditions (i) and (ii) are analogues of the reduction number
one condition for complete ideals (cf. [LT]) and yield Briançon-Skoda like relations
between B and A. Parts (iii) and (iv) assert that the “Rees ring” and “associated
graded ring” are Cohen-Macaulay while part (v) states that the Hilbert function
associated to A is a polynomial in n for all values of n. The rank one case of
these results was given in [HS]. The proof of the theorem will proceed in two steps.
In section two we will prove that the reduction number one conditions hold for
complete modules and in section three we show that parts (iii) and (v) follow from
parts (i) and (ii). In section four we present the main theorem. In section one we
establish our notation and definitions.

1. Preliminaries

Throughout, (R,m) will denote a two-dimensional regular local ring with infinite
residue field. Let A be a non-free, finitely generated torsion-free R-module. Then
A has a projective resolution of the form

0→ G1 → G0 → A→ 0,

where G0 and G1 are finitely generated free R-modules. Dualizing this resolution
yields

0→ A∗ → G∗0 → G∗1 → Ext1
R(A,R)→ 0,

where “*” denotes R-dual. Since A is free on the punctured spectrum of R,
Ext1

R(A,R) has finite length. It follows that A∗ and therefore A∗∗ are free R-
modules. Since A is torsion free, the canonical map A→ A∗∗ is an embedding and
because A is free on the punctured spectrum of R, the cokernel of this embedding
has finite length. Set F := A∗∗. It is not difficult to see that up to isomorphism,
this is the only way that A can be embedded in a free module such that the quotient
has finite length. In other words, if A ↪→ F ′ is an embedding of A into the free
module F ′ such that λR(F ′/A) < ∞, then there is an isomorphism from F to F ′

taking the image of A in F onto the image of A in F ′. So, we assume henceforth
that A ⊆ F and λR(F/A) < ∞. Set r := rank(A) = rank(F ) and m := µ(A), the
minimal number of generators of A. If we fix a basis for F , we may identify the
generators of A with the columns of an r ×m matrix. Write C1, . . . , Cm for these
column vectors and set I := Ir(A), the ideal of r × r minors of the corresponding
matrix.

Now, let Fn denote the nth symmetric power of F and An denote the image of
the nth symmetric power of A in Fn. Thus F :=

⊕
n≥0 Fn is the symmetric algebra

of F and A :=
⊕

n≥0An ⊆ F is the symmetric algebra of A, modulo its R-torsion.
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Note that dim(A) = dim(F) = r + 2. In analogy with the case for ideals, we refer
to A as the Rees ring of R with respect to A. We shall frequently identify A and F
with the degree one components of A and F and let the context determine when we
mean A or A1 or F or F1. Additionally, for any R-module B ⊆ F , for any f ∈ Bm
and g ∈ An, we write fg for the corresponding element of Fn+m. In other words,
all sums and products we consider occur inside F .

We now recall the notion of integral closure as it applies to modules. This
definition was recently given by Rees in [R], though its origin can be traced to
the appendix of [ZS]. The integral closure of A, denoted A′, is defined to be the
intersection of the modules AV ∩ F as V ranges over the discrete valuation rings
between R and its quotient field K. By AV we mean the V -submodule of F ⊗RK
generated by A. Alternately, A′ may be described as the degree one component of
the integral closure of A. A is said to be integrally closed or complete if A = A′.
Closely related to the concept of the integral closure is the notion of reduction. An
R-module B ⊆ A is said to be a reduction of A if B′ = A′. Equivalently, B is a
reduction of A if and only if A is a finitely generated module over B, the Rees ring
of R with respect to B. Thus, by the Artin-Rees lemma, B1An = An+1, for n >> 0.
A reduction B ⊆ A is said to be a minimal reduction of A if B properly contains no
further reductions of A. If B ⊆ A is a minimal reduction, then the reduction number
of A with respect to B, denoted rdB(A), is the smallest n such that An+1 = B1An.
A is said to have reduction number one, if B 6= A and rdB(A) = 1, for some minimal
reduction B. Just as for ideals, any minimal generating set for a minimal reduction
of A extends to a minimal generating set for A itself. Moreover, it is not hard to
see that λR(F/B) < ∞ for any reduction B. It follows from [BR, Thm. 3.1] that
for n >> 0, the functions λR(Fn/Bn) and λR(Fn/An) are polynomials in n having
degree r + 1. The normalized leading coefficients of these polynomials are denoted
e(B) and e(A), respectively, and are called the Buchsbaum-Rim multiplicities of B
and A. By [BR, Prop. 3.8], if µ(B) = r + 1, then e(B) = λR(F/B). The following
proposition records the basic facts we need concerning reductions.

Proposition 1.1. Let A ⊆ F be as above. Then

(i) e(B) = e(A), for any reduction B ⊆ A.
(ii) Any minimal reduction B ⊆ A is minimally generated by r + 1 elements.

Consequently, if B is a minimal reduction, then e(A) = λR(F/B).
(iii) For any minimal reduction B ⊆ A, the Rees ring of R with respect to B is

a hypersurface. In particular, the Rees ring equals the symmetric algebra for
any minimal reduction B.

Proof. Let B ⊆ A be a reduction. ThenA/B is a finitely generated B-module whose
graded components An/Bn have finite length over R. Since the annihilator of A/B
contains a power of m, it follows that dimB(A/B) ≤ r + 1. Thus the polynomial
which for large n gives λR(An/Bn) has degree less than or equal to r. It follows
immediately from this that e(B) = e(A). That any minimal reduction B ⊆ A is
minimally generated by r+1 elements and that these elements extend to a minimal
generating set for A follow immediately from the Noether normalization lemma
applied to A/mA once we observe that dim(A/mA) = r+ 1, i.e., height(mA) = 1.
Of course, height(mA) ≤ 2. Suppose that height(mA) = 2. Then dim(A/mA) = r.
By the normalization lemma, there exists a reduction B ⊆ A with µ(B) = r. Thus
B is a free R-module and therefore B is integrally closed. Therefore, B = A, and
A is free, a contradiction. Thus dim(A/mA) = r + 1 and the first statement in
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part (ii) follows. The second statement follows from the remarks preceding the
proposition.

To prove part (iii), let B ⊆ A be a minimal reduction. By what we have just
shown, we may assume that B is generated by the first r+1 generators of A, i.e., the
column vectors C1, . . . , Cr+1. Let B̃ denote the r × (r + 1) matrix whose columns
are the Ci’s and for each 1 ≤ i ≤ r + 1, let ∆i be (−1)i+1 times the determinant

obtained by deleting the ith column of B̃. Thus

∆1C1 + · · ·+ ∆r+1Cr+1 = 0.

Now, map R[W1, . . . ,Wr+1] onto B by sending Wi to Ci and denote by L the kernel
of this map. Clearly, f := ∆1W1 + · · ·+ ∆r+1Wr+1 ∈ L. However, since BP = FP
for all non-maximal primes P ⊆ R, it follows that f generates L locally at each P .
Thus for some s ≥ 1, we have msL ⊆ f · R[W1, . . . ,Wr+1]. Since R is regular, we
conclude L = f ·R[W1, . . . ,Wr+1]. This gives the desired conclusions.

2. Reduction number one

In this section we show that complete, torsion-free R-modules have reduction
number one. The idea is to induct on the Buchsbaum-Rim multiplicity and to use
the facts that complete modules are contracted from quadratic transformations of
R and that the Buchsbaum-Rim multiplicity decreases upon passage to quadratic
transforms. This strategy was introduced for ideals in [H] and [HS] and successfully
adapted to modules in [Ko]. We begin by describing in more detail the process of
taking quadratic transforms of modules.

Let K denote the quotient field of R. A (first) quadratic transformation of R is
a two-dimensional regular local ring T between R and K obtained by localizing a
ring of the form R[m/x] at a height two maximal ideal, for some x ∈ m\m2. Let
A be a finitely generated torsion-free R-module, F := A∗∗ and r := rank(A). We
consider the module AT , i.e., the T -submodule of F ⊗R K generated by A and
call this the transform of A over T . Note that if A = I is an ideal, this differs
from the usual notion of transform where the greatest common divisor in T of the
generators of I has been factored out. We shall denote the standard transform by
IT . Thus IT is primary for the maximal ideal of T , while IT is not. Of course,
as T -modules, these ideals are isomorphic. For any birational extension R ⊆ S, we
say that A is contracted from S if AS ∩ F = A. Finally, we write ordR(A) for the
m-adic order of A, by which we mean ordR(Ir(A)), the m-adic order of Ir(A). The
following theorem summarizes the results from [Ko] that we shall use in the proof
of Proposition 2.2. In the statement of Theorem 2.1, a property is said to hold for
sufficiently general x ∈ m\m2 if there exist ideals I1, . . . , Ih properly contained in
m such that the property holds for all x 6∈ m2 ∪ I1 ∪ · · · ∪ Ih.

Theorem 2.1. Let A be a finitely generated torsion-free R-module and set I :=
Ir(A). The following statements hold.

(i) µ(A) = ordR(A) + r if and only if for sufficiently general x ∈ m\m2, A is
contracted from S := R[m/x].

(ii) If A is complete, then for sufficiently general x ∈ m\m2, A is contracted from
S := R[m/x].

(iii) If T is any quadratic transform, then e(AT ) < e(A), Ir(AT ) = IT and AT is
complete if A is complete.

(iv) If A is complete, then I, IA and A2 are complete.
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Proposition 2.2. Let A be a finitely generated complete, torsion-free R-module,
B ⊆ A a minimal reduction and I := Ir(A). Then

(i) BA = A2.
(ii) IB = IA.

Proof. The proof in each case is similar and proceeds by induction on e(A). If
e(A) = 0, thenA is free. ThusB = A and there is nothing to prove. Suppose e(A) >
0. By Theorem 2.1, A2 and IA are complete. Suppose we could show that µ(BA) =
ordR(BA) + rank(BA) and µ(IB) = ordR(IB) + rank(IB). Then by Theorem
2.1, there exists x ∈ m\m2 such that A2, BA, IA and IB are contracted from
S := R[m/x]. For every transform T associated to S, e(AT ) < e(A). Therefore
BAT = A2T for all such transforms, so BAS = A2S. Thus BA = BAS ∩ R =
A2S ∩ R = A2. Similarly, since Ir(AT ) = Ir(A)T , IBT = IAT for all transforms
T , so IBS = IAS. Thus IB = IBS ∩R = IAS ∩R = IA.

To prove µ(BA) = ordR(BA) + rank(BA), note that ordR(BA) = ordR(A2),
since BA is a reduction of A2. Since the ideal of maximal minors of A2 is Ir+1,
it follows that ordR(BA) = (r + 1) ordR(A) = (r + 1)(m − r). Thus ordR(BA) +
rank(BA) = (r + 1)(m− r) +

(
r+1

2

)
. On the other hand, BA = B2 +BL, where L

is the submodule of F generated by Cr+2, . . . , Cm. Writing B for the Rees algebra
of B, it follows from the proof of Proposition 1.1 that B/mB is a polynomial ring
in r + 1 variables over R/m. Thus µ(B2) =

(
r+2

2

)
. It follows that BA requires

no more than
(
r+2

2

)
+ (r + 1)(m − r − 1) =

(
r+1

2

)
+ (r + 1)(m − r) generators. It

therefore remains to see that the generators of B2 + BL that we’ve accounted for
are a minimal generating set. Now, suppose that we have an R linear combination
of these elements equal to zero. We need to show that each coefficient belongs
to m. This can be seen as follows. We may rewrite the given relation as an A-
linear combination of C1, . . . , Cr+1, where the new coefficents have degree one.
Suppose we could show that the A coefficents belong to B1. Then, as the column
vectors C1, . . . , Cm minimally generate A, we are precluded from having any unit
coefficents in the original relation on the generators of B2 + BL. That the degree
one coefficients belong to B1 is a consequence of the claim proven in Proposition
3.4 below (see (?)). Thus µ(BA) = ordR(BA) + rank(BA), as desired.

Similarly, to see µ(IB) = ordR(IB) + rank(IB), note that

ordR(IB) + rank(IB) = ordR(I) rank(B) + ordR(B) + rank(B)

= (m− r)(r + 1) + r.

On the other hand, since A is complete, I is complete. Thus

µ(I) = ordR(I) + 1 = m− r + 1.

Let ρ1, . . . , ρm−r+1 minimally generate I. Then the (m − r + 1)(r + 1) column
vectors ρiCj generate IB, where C1, . . . , Cr+1 are the column vectors generating
B. Write J for the ideal of r × r minors associated to B. Since B is a reduction
of A, J is a reduction of I. It follows that J 6⊆ mI. Therefore, without loss of
generality, we may assume ρ1 = ∆1 (in the notation of Proposition 1.1). Since
∆1C1 + · · · + ∆r+1Cr+1 = 0, ρ1C1 is a redundant generator. If we show that the
remaining column vectors ρiCj minimally generate IB, we will be done. Suppose
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that we have a relation
∑
i,j αijρiCj = 0, for some αij ∈ R, with α11 = 0. Thus

(
∑
i

αi1ρi) · C1 + · · ·+ (
∑
i

αi,r+1ρi) · Cr+1 = 0.

By the proof of Proposition 1.1, there exists γ ∈ R such that
∑
i αitρi = γ∆t,

for all 1 ≤ t ≤ r + 1. Consider this equation for t = 1. Since ρ1 = ∆1 and
α11 = 0, if γ /∈ m, then ρ1 would belong to the ideal generated by ρ2, . . . , ρm−r+1,
a contradiction. Thus γ ∈ m. It now follows easily that each αij ∈ m, which is
what we want.

Remark. Recall that the Briançon-Skoda theorem yields for any ideal I ⊆ R,
(I ′)2 ⊆ I. This follows from the stronger result that I ′ has reduction number
one. Proposition 2.2 gives similar Briançon-Skoda relations for modules. We record
these as a corollary.

Corollary 2.3. Let A ⊆ F be a finitely generated torsion-free R-module and I :=
Ir(A). Then

(i) (A′)2 ⊆ FA.
(ii) I ′A′ ⊆ A.

Proof. Let B ⊆ A be a minimal reduction. Then B is also a minimal reduction
for the complete module A′. Therefore the corollary follows immediately from the
preceding proposition.

3. Consequences of reduction number one

In this section we are going to use the reduction number one condition to see
that the Rees algebra A is Cohen-Macaulay and to deduce that the Hilbert function
λR(Fn+1/An+1) is a polynomial in n for all n. These consequences undoubtedly fol-
low from the reduction number one condition in more general settings, but for now
our techniques and exposition remain confined to the setting we have established.

Before moving on to Proposition 3.2, we will need to establish some notation.
We assume that A ⊆ F is minimally generated by m column vectors. If B ⊆ A is a
minimal reduction, then B is minimally generated by r + 1 column vectors, which
we take to be the first r+1 generators of A. We let B̃ denote the r× (r+1) matrix
whose columns are the generators of B and ∆i be (−1)i+1 times the determinant

obtained by deleting the ith column of B̃. For each r + 2 ≤ j ≤ m, we let Hj

denote the r× (r+ 2) matrix obtained by adding the jth column vector generating

A to the matrix B̃. For 1 ≤ k 6= l ≤ r + 2, ∆k,l(Hj) will denote (−1)k+l times the
determinant of the submatrix of Hj obtained by deleting the kth and lth columns.
There are numerous “generic relations” as well as the Plücker relations occurring
among the minors of A and its columns (when m > r + 1). Fortunately, we need
only a few. As before, we let C1, . . . , Cm denote the column vectors generating A.
We will express the relations we need in terms of the minors of the Hj and the
columns Ci. For r + 2 ≤ j ≤ m we have the two sets of relations

−∆1,2(Hj)C1 + ∆2,3(Hj)C3 + · · ·+ ∆2,r+1(Hj)Cr+1 + ∆2,r+2(Hj)Cj = 0,(∗)

∆1,2(Hj)C2 + ∆1,3(Hj)C3 + · · ·+ ∆1,r+1(Hj)Cr+1 + ∆1,r+2(Hj)(Cj) = 0.(∗∗)
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Note that for any j and any 1 ≤ k ≤ r+1, ∆k,r+2(Hj) = (−1)r+1∆k. Additionally,
for each r + 2 ≤ j ≤ m and 3 ≤ h ≤ r + 1, we will need the Plücker relations

∆1,2(Hj)∆h,r+2(Hj)−∆1,h(Hj)∆2,r+2(Hj) + ∆1,r+2(Hj)∆2,h(Hj) = 0.(∗ ∗ ∗)
A good source for these relations is [BV]. We need a lemma before presenting
Proposition 3.2.

Lemma 3.1. Let B̃ be an r× (r + 1) matrix with Ir(B̃) m-primary. Then after a

possible application of elementary column operations, we may assume that ∆i(B̃)

and ∆j(B̃) form a system of parameters for any pair i 6= j.

Proof. We begin with an observation. Let Q1, . . . , Qh be any collection of height

one prime ideals. Then there exists a matrix B̂, obtained from B̃ by elementary

column operations, such that ∆i(B̂) /∈ Q1 ∪ · · · ∪ Qh and ∆j(B̂) = ∆j(B̃) for
j 6= i. To see this, we may assume i = 1. Let J be the ideal generated by
∆2(B̃), . . . ,∆r+1(B̃). Then (∆1(B̃), J)R 6⊆ Q1 ∪ · · · ∪Qh. By the prime avoidance

lemma ([Kap, Thm. 256]), there exist ρ2, . . . , ρr+1 such that ∆1(B̃) + ρ2∆2(B̃) +

· · ·+ ρr+1∆r+1(B̃) /∈ Qi, for all 1 ≤ i ≤ h. For each 2 ≤ j ≤ r + 1, we replace the

jth column Cj of B̃ by Cj +ρ′jC1, where ρ′j = (−1)jρj and call the resulting matrix

B̂. Then ∆1(B̂) = ∆1(B̃) + ρ2∆2(B̃) + · · · + ρr+1∆r+1(B̃) and ∆j(B̂) = ∆j(B̃),
for j 6= 1, which is what we want. Now, if we let the collection of primes be
the primes minimal over ∆1(B̃), we may apply the observation, as needed, to the

remaining minors to assume that ∆1(B̃),∆j(B̃) form a system of parameters for
all j 6= 1. Now let the collection of primes be the union of the height one primes
containing ∆1(B̃) or ∆2(B̃). Then we may again apply the observation to the

remaining minors ∆3(B̃), . . . ,∆r+1(B̃), as needed, to assume that ∆i(B̃),∆j(B̃)
form a system of parameters for i = 1, 2 and j 6= i. Continuing the process yields
the result.

Proposition 3.2. Let A be a finitely generated torsion-free R-module. Then A is
Cohen-Macaulay if and only if the reduction number of A with respect to B is less
than or equal to one for every minimal reduction B ⊆ A.

Proof. We retain the notation established before Lemma 3.1. Let B ⊆ A be a
minimal reduction. By Lemma 3.1 we may assume that ∆1 and ∆2 form a system
of parameters in R. Set J := (∆2, C1 − ∆1, C2, . . . , Cr+1)A and write P and
Q respectively for the homogeneous maximal ideals of A and B. Since A is a
graded ring, to prove that A is Cohen-Macaulay, it is enough to show that AP is
Cohen-Macaulay. We are going to derive the Cohen-Macaulay property of AP by
comparing λR(A/J ) and e(JP), the multiplicity of JP . The proof will proceed in
a number of steps.

We begin by showing that J is P-primary. Now

−C2
1 = −C1(C1 −∆1) + ∆2C2 + · · ·+ ∆r+1Cr+1

since ∆1C1 + · · · + ∆r+1Cr+1 = 0. Hence C2
1 ∈ J . Since B is a reduction of

A, it now follows that As+ ⊆ J , for an appropriate power s. On the other hand,
∆2

1 ∈ J , since C2
1 ∈ J and therefore (∆2

1,∆2) ⊆ J . Since ∆1,∆2 form a system of
parameters it follows that some power of m is contained in J and therefore that J
is P-primary. Since dim(AP) = r + 2, JP is generated by a system of parameters
in AP .
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We now calculate e(JP ). By the associativity formula, we may calculate the
multiplicity of JQ ⊆ BQ. However, by Proposition 1.1, B is Cohen-Macaulay,
therefore

e(JQ) = λR(B/JB).

Moreover, the proof of Proposition 1.1 shows that if we present B by mapping
R[W1, . . . ,Wr+1] onto it in the obvious way, then the kernel of the resulting map
is generated by the single linear polynomial f := ∆1W1 + · · ·+ ∆r+1Wr+1. Conse-
quently,

λR(B/JB) = λR(R[W1, . . . ,Wr+1]/(∆2,W1 −∆1,W2, . . . ,Wr+1, f))

= λR(R/(∆2
1,∆2)R).

It follows that e(JP) = λR(R/(∆2
1,∆2)R) = 2λR(R/(∆1,∆2)R) (since R is Cohen-

Macaulay).
Now, thinking of A/J as a finite length R-module, we consider the submodule

L generated over R by the elements {1′, C′r+2, . . . , C
′
m}, where C′j denotes the

image of Cj in A/J . We are going to show that λR(L) = 2λR(R/(∆1,∆2)R).
Upon doing so, it will follow immediately that A is Cohen-Macaulay if and only if
rdB(A) ≤ 1. For r + 2 ≤ i ≤ m, let Li denote the R submodule of L generated by
{1′, C′r+2, . . . , C

′
i}. Then an easy induction argument shows that

λR(L) = λR(R/J ∩R) +
m−1∑
i=r+2

λR(R/(Li :R C
′
i+1)).

We now make two claims. The first claim is that J ∩R = (∆2,∆1J)R, where

J = (∆1,∆2,∆1,2(Hr+2), . . . ,∆1,2(Hm))R.

The second claim is that for r + 2 ≤ i ≤ m − 1, (Li :R C′i+1) = (Ji : ∆1,2(Hi+1)),
where Ji = (∆1,∆2,∆1,2(Hr+2), . . . ,∆1,2(Hi))R. Suppose for the moment that
these claims hold. Then

λR(L) = λR(R/J ∩R) +
m−1∑
i=r+2

λR(R/(Li :R C
′
i+1))

= λR(R/(∆2,∆1J)) +
m−1∑
i=r+2

λR(R/(Ji : ∆1,2(Hi+1)))

= λR(R/(∆1,∆2)R) + λR((∆1,∆2)R/(∆1J,∆2))

+
m−1∑
i=r+2

λR(R/(Ji : ∆1,2(Hi+1)))

= λR(R/(∆1,∆2)R) + λR(∆1R/(∆1J,∆1∆2))

+
m−1∑
i=r+2

λR(R/(Ji : ∆1,2(Hi+1)))

= λR(R/(∆1,∆2)R) + λR(R/J) +
m−1∑
i=r+2

λR(R/(Ji : ∆1,2(Hi+1))).
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However, an easy induction shows that

λR(R/J) +
m−1∑
i=r+2

λR(R/(Ji : ∆1,2(Hi+1))) = λR(R/(∆1,∆2)R).

Thus, λR(L) = 2λR(R/(∆1,∆2)R), as desired. It therefore remains to verify both
claims.

To verify the first claim, suppose that s ∈ J ∩R. Then we have an equation

s = u∆2 + v1(C1 −∆1) +
r+1∑
j=2

vjCj

with coefficients from A. Comparing the degree zero and degree one terms in this
equation gives rise to the equations

s = u0∆2 − v01∆1,

0 = u1∆2 − v11∆1 +
r+1∑
j=1

v0jCj ,

where u0 and the v0j are the degree zero components of u and the vj , and u1 and
the v1j are the degree one components. We need to see that v01 ∈ J . Writing
u1 =

∑m
j=1 αjCj , αj ∈ R and using (∗) (bearing in mind that ∆2 = ±∆2,r+2(Hj)

for all j), we obtain

u1∆2 = (∆2α1 +
m∑

j=r+2

±αj∆1,2(Hj))C1 +
r+1∑
i=2

γiCi

for appropriate elements γi ∈ R determined by (∗). Writing −v11 =
∑m
j=1 βjCj ,

we may do likewise for −v11∆1, using (∗∗). However, since we are only interested
in the resulting coefficient of C1, we simply write

−v11∆1 = ∆1β1C1 +
r+1∑
i=2

δiCi,

for appropriate δi ∈ R. We therefore obtain

0 = u1∆2 − v11∆1 +
r+1∑
j=1

v0jCj

= (∆2α1 +
m∑

j=r+2

±αj∆1,2(Hj) + ∆1β1 + v01)C1 +
r+1∑
i=2

µiCi,

for appropriate µi ∈ R. Since
∑r+1
k=1 ∆kCk = 0 is the only relation on C1, . . . , Cr+1

(by Proposition 1.1), it follows that

∆2α1 +
m∑

j=r+2

±αj∆1,2(Hj) + ∆1β1 + v01 ∈ ∆1R.

In other words, v01 ∈ J , as desired. Conversely, suppose that

s ∈ (∆2,∆1J) = (∆2,∆
2
1,∆1∆1,2(Hr+2), . . . ,∆1∆1,2(Hm)).
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Then there exist t, si ∈ R such that

s = t∆2 + s1∆2
1 +

m∑
i=r+2

si∆1∆1,2(Hi).

Therefore

s = t∆2 + s1(∆1(−C1 + ∆1)−
r+1∑
j=2

∆jCj) + (−C1 + ∆1)
m∑

i=r+2

si∆1,2(Hi)

+
m∑

i=r+2

si∆1,2(Hi)C1.

However, (∗) implies that ∆1,2(Hi)C1 ∈ (∆2, C3, . . . , Cr+1)R, for all r+2 ≤ i ≤ m.
Thus, s ∈ J ∩R and we have verified the first claim.

We now proceed to verify the second claim. Suppose s ∈ (Li :R Ci+1). Then a
moment’s reflection will show that we may write an equation

sCi+1 = v1∆1 + v2∆2 +
r+1∑
j=1

u′jCj +
i∑

j=r+2

tjCj ,

where v1, v2 ∈ A1 and u′j , tj ∈ R. Equations (∗) and (∗∗) show that v1∆1 and v2∆2

can be expressed as R linear combinations of C1, . . . , Cr+1. Thus, we may rewrite
the equation as

sCi+1 =
r+1∑
j=1

ujCj +
i∑

j=r+2

tjCj ,

for uj ∈ R. Multiplying by ∆′2 := (−1)r+1∆2 (and bearing in mind that ∆′2 =
∆2,r+2(Hj) for all j), we obtain

s∆′2Ci+1 =
r+1∑
j=1

uj∆
′
2Cj +

i∑
j=r+2

tj∆2,r+2(Hj)Cj .

Using (∗), we may rewrite this last equation as

s(∆1,2(Hi+1)C1 −
r+1∑
k=3

∆2,k(Hi+1)Ck)

=
r+1∑
j=1

uj∆
′
2Cj +

i∑
j=r+2

tj(−∆1,2(Hj)C1 −
r+1∑
k=3

∆2,k(Hj)Ck).

Thus

(s∆1,2(Hi+1)− u1∆′2 +
i∑

j=r+2

tj∆1,2(Hj))C1 +
r+1∑
k=2

αkCk = 0,

for appropriate αk ∈ R. As before, this implies that

s∆1,2(Hi+1) + u1∆′2 −
i∑

j=r+2

tj∆1,2(Hj) ∈ ∆1R.
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Thus s ∈ (Ji : ∆1,2(Hi+1)), as desired. Finally, suppose that s ∈ (Ji : ∆1,2(Hi+1)).
For each 1 ≤ h ≤ r + 1, set ∆′h := (−1)r+1∆h = ∆h,r+2(Hj). Then we have an
equation

s∆1,2(Hi+1) = u∆′1 + v∆′2 +
i∑

k=r+2

tk∆1,2(Hk).

For each 3 ≤ h ≤ r + 1, multiply this equation by ∆′h. We get

s∆1,2(Hi+1)∆′h = u∆′1∆′h + v∆′2∆′h +
i∑

k=r+2

tk∆1,2(Hk)∆′h.

Using the Plücker relations (∗ ∗ ∗) we obtain

s(∆1,h(Hi+1)∆′2 −∆′1∆2,h(Hi+1))

= u∆′1∆′h + v∆′2∆′h +
i∑

k=r+2

tk(∆1,h(Hk)∆′2 −∆′1∆2,h(Hk)).

Therefore

(u∆′h −
i∑

k=r+2

tk∆2,h(Hk) + s∆2,h(Hi+1))∆′1

+ (v∆′h +
i∑

k=r+2

tk∆1,h(Hk)− s∆1,h(Hi+1))∆′2 = 0.

Since ∆′1,∆
′
2 form a regular sequence, we have that

v∆′h +
i∑

k=r+2

tk∆1,h(Hk)− s∆1,h(Hi+1) = −µh∆′1

for some µh ∈ R, 3 ≤ h ≤ r + 1. If we set µ2 := u and bear in mind our original
equation, we have that

s∆1,h(Hi+1) = µh∆′1 + v∆′h +
i∑

k=r+2

tk∆1,h(Hk),

for h = 2, . . . , r + 1. Thus

r+1∑
h=2

s∆1,h(Hi+1)Ch =
r+1∑
h=2

∆′1µhCh +
r+1∑
h=2

v∆′hCh +
i∑

k=r+2

tk(
r+1∑
h=2

∆1,h(Hk)Ch).

It follows from (∗∗) that

−s∆′1Ci+1 = ∆′1

r+1∑
h=2

µhCh + v(−∆′1C1) +
i∑

k=r+2

tk(−∆′1Ck).

Therefore, sCi+1 is an R linear combination of C1, . . . , Ci. It follows easily from
this that sC′i+1 ∈ Li, as desired. Thus the second claim has been verified, and the
proof of the proposition is now complete.

Remark. The proof of Proposition 3.2 shows that if rdB(A) = 1, for some minimal
reduction B ⊆ A, then rdB(A) = 1, for every minimal reduction B.
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We are now going to turn our attention to showing that if A has reduction
number one, then the function λR(Fn+1/An+1) is a polynomial in n for all n ≥ 0.
We will first focus on a minimal reduction of A. To do this we need a definition.
Let B be any torsion-free R-module. B is said to be a parameter module if µ(B) =
rank(B)+1. If we embed B into a free module so that the quotient has finite length,
then the matrix whose columns correspond to the generators of B is a parameter
matrix in the sense of [BR].

Proposition 3.3. Let B be a finitely generated torsion-free parameter module, set
F := B∗∗ and assume rank(B) = r. Then for all n ≥ 0, λR(Fn+1/Bn+1) =
λR(F/B) ·

(
n+r+1
r+1

)
.

Proof. We induct on n and r. If r = 1, then B is a parameter ideal and the result
is well known. If n = 0, the conclusion clearly holds. Suppose now that r > 1 and
n > 0. Choosing a basis for F , we may regard the generators ofB as column vectors.
Since B is free on the punctured spectrum of R, basic element theory allows us to
find a minimal generator x ∈ B, such that the ideal in R generated by the entries
of x has height greater than or equal to 2. Set F ′ := F/Rx and B′ := B/Rx. Then
B′ ⊆ F ′ are torsion free R-modules. Of course, if x is also a minimal generator for
F , then F ′ is a free R-module. In any case, since λR(F ′/B′) < ∞, (F ′)∗ = (B′)∗

is free of rank r − 1. Thus F ′ and B′ have the same double dual, say G. Note in
the case that Rx is a summand of F , F ′ = G. If Rx is not a summand of F , then
µ(F ′) = r = rank(F ′) + 1, so F ′ is a parameter module. Clearly B′ is a parameter
module. Thus, by induction on r,

λR(Gn+1/F
′
n+1) = λR(G/F ′) ·

(
n+ r

r

)
and

λR(Gn+1/B
′
n+1) = λR(G/B′) ·

(
n+ r

r

)
.

Therefore,

λR(F ′n+1/B
′
n+1) = λR(F ′/B′) ·

(
n+ r

r

)
= λR(F/B) ·

(
n+ r

r

)
.

On the other hand, F/xF and B/xB are the symmetric algebras of F ′ and B′.
Since F ′ and B′ are either free or parameter modules, their Rees algebras equal
their symmetric algebras (Proposition 1.1). Thus we have exact sequences

0→ Fn
·x−→ Fn+1 → F ′n+1 → 0

0→ Bn
·x−→ Bn+1 → B′n+1 → 0,

from which it follows that the sequence

0→ Fn/Bn
·x−→ Fn+1/Bn+1 → F ′n+1/B

′
n+1 → 0

is exact. Therefore,

λR(Fn+1/Bn+1) = λR(Fn/Bn) + λR(F ′n+1/B
′
n+1).
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By induction on n, λR(Fn/Bn) = λR(F/B) ·
(
n+r
r+1

)
. Thus,

λR(Fn+1/Bn+1) = λR(F/B) ·
(
n+ r

r + 1

)
+ λR(F/B) ·

(
n+ r

r

)
= λR(F/B) ·

(
n+ r + 1

r + 1

)
,

as desired.

Proposition 3.4. Let A be a finitely generated torsion-free R-module and assume
that the reduction number of A is one. Then for all n ≥ 0, λR(Fn+1/An+1) =
e(A) ·

(
n+r+1
r+1

)
− λR(A/B) ·

(
n+r
r

)
, for any minimal reduction B ⊆ A.

Proof. LetB ⊆ A be a minimal reduction. By the remark above, since the reduction
number of A is one, An+1 = A1Bn, for all n ≥ 0. Consider the exact sequences

0→ F1Bn/A1Bn → Fn+1/An+1 → Fn+1/F1Bn → 0

0→ F1Bn/Bn+1 → Fn+1/Bn+1 → Fn+1/F1Bn → 0.

It follows that

λR(Fn+1/An+1) = λR(Fn+1/Bn+1) + λR(F1Bn/A1Bn)− λR(F1Bn/Bn+1).

We now make the following claim. Let C1, . . . , Cr+1 denote the column vectors
generating B and set N :=

(
n+r
r

)
. If f1, . . . , fN are linear forms in F satisfying

f1C
n
1 + f2C

n−1
1 C2 + · · ·+ fN−1CrC

n−1
r+1 + fNC

n
r+1 = 0,(?)

then each fi ∈ B. Suppose the claim holds. Let φ : FN → F1Bn be the surjective
R-module homorphism taking the N -tuple (f1, . . . , fN ) to f1C

n
1 + · · · + fNC

n
r+1.

It follows from the claim that the induced maps

φ1 : (F/A)N → F1Bn/A1Bn and φ2 : (F/B)N → F1Bn/Bn+1

are isomorphisms. Thus

λR(F1Bn/A1Bn) = λR(F/A) ·
(
n+ r

r

)
and

λR(F1Bn/Bn+1) = λR(F/B) ·
(
n+ r

r

)
.

Since λR(Fn+1/Bn+1) = e(A) ·
(
n+r+1
r+1

)
, the proposition follows, once we verify the

claim.
To verify the claim, we consider it to be a statement concerning parameter

modules and prove the statement by induction on r. If r = 1, the result is well-
known. Suppose that r > 1. It follows from Lemma 3.1, that if we regard the
generators of B as column vectors in F , then we may assume that for each Ci,
1 ≤ i ≤ r + 1, the ideal in R generated by the entries of Ci has height greater
than or equal to 2. Set x := Ci, B

′ := B/Rx and F ′ := F/Rx. As in the proof
of Proposition 3.3, B and F have the same double dual G, B/xB equals the Rees
ring of R with respect to B′ and F/xF equals the Rees ring of R with respect to
F ′. Thus B/xB ⊆ F/xF ⊆ G, the symmetric algebra of G. If we now think of (?)
as an equation in F , we may reduce the equation mod xF , where it becomes an
equation in G. By induction on r we conclude that every coefficient of a term in
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(?) not involving Ci belongs to B. Varying i will cover all coefficients in (?), i.e.,
each fi ∈ B, as desired.

4. The main theorem

We are now ready for the main result of the paper.

Theorem 4.1. Let (R,m) be a two-dimensional regular local ring and A a finitely
generated complete, torsion-free R-module. The following conditions hold :

(i) BA = A2 for every minimal reduction B ⊆ A.
(ii) IB = IA for every minimal reduction B ⊆ A.
(iii) The Rees ring A is Cohen-Macaulay.
(iv) The ring A/IA is Cohen-Macaulay.
(v) λR(Fn+1/An+1) = e(A) ·

(
n+r+1
r+1

)
− λR(A/B) ·

(
n+r
r

)
, for all n ≥ 0 and every

minimal reduction B ⊆ A.

Proof. Parts (i) and (ii) follow from Proposition 2.2. Parts (iii) and (iv), follow
from part (i) via Propostions 3.2 and 3.4. To see that A/IA is Cohen-Macaulay,
we retain the notation of Proposition 3.2. Since the images of C1, . . . , Cr+1 form a
homogeneous system of parameters in A/IA, it remains to see that they also form
a regular sequence. For this, suppose we have a relation

f1C1 + · · ·+ fr+1Cr+1 ∈ IA,
where each fi ∈ A is homogeneous, say of degree n. If n = 0, then, since IA = IB,
we may write an equation

f1C1 + · · ·+ fr+1Cr+1 = s1C1 + · · ·+ sr+1Cr+1,

with each si ∈ I. Since ∆1C1 + · · ·+ ∆r+1Cr+1 = 0 is the only relation on the Ci’s
(over R), it follows that each fi ∈ I, which is what we want. Suppose now that
n ≥ 1. Then f1C1 + · · ·+ fr+1Cr+1 ∈ IAn+1 = IAnB. Thus there exist gi ∈ IAn
such that

f1C1 + · · ·+ fr+1Cr+1 = g1C1 + · · ·+ gr+1Cr+1.

Setting f ′i = fi − gi, we obtain

f ′1C1 + · · ·+ f ′r+1Cr+1 = 0.

Thus,

f ′1∆1 + f ′1(C1 −∆1) + f ′2C2 + · · ·+ f ′r+1Cr+1 = 0.

However, the generic relations (∗∗) imply that ∆1A is contained in the submodule
IC2 + · · ·+ ICr+1. Thus we may rewrite this last equation as

f ′1(C1 −∆1) + h2C2 + · · ·+ hr+1Cr+1 = 0,

where hi = f ′i − ki, for some ki ∈ IAn−1. Since C1 − ∆1, C2, . . . , Cr+1 form a
regular sequence in AP , the coefficients of this last equation give rise to a column
vector belonging to the Koszul relations on C1 − ∆1, C2, . . . , Cr+1. Interpreting
this modulo IA yields the result.

Remark. (a) When A = I is an ideal, not necessarily complete, it is known that the
conditions in Theorem 4.1 are equivalent. We conjecture that the conditions in the
theorem are equivalent for modules which are not necessarily complete. Our proof
almost shows this; however, we have not been able to demonstrate the equivalence
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of conditions (i) and (ii) for an arbitrary module A. Assuming this, then the
conditions are readily seen to be equivalent. We record this as a corollary.

(b) In [HS] it is shown that if I ⊆ R is a complete ideal, then the Rees ring of R
with respect to I localized at its homogeneous maximal ideal is Cohen-Macaulay
with minimal multiplicity. This continues to hold for complete modules, as we show
in the corollary below.

Corollary 4.2. Let A be a finitely generated torsion-free R-module.

(i) Conditions (i), (iii), and (iv) in Theorem 4.1 are equivalent. If conditions (i)
and (ii) are equivalent, then conditions (i)–(v) are equivalent.

(ii) Let P denote the homogeneous maximal ideal of A. Then AP is Cohen-
Macaulay with minimal multiplicity if and only if A has reduction number
less than or equal to 1 and µ(A) = ordR(A) + rank(A). In particular, if A is
complete, then AP is Cohen-Macaulay with minimal multiplicity.

Proof. The equivalence of (i) and (iii) follows from Proposition 3.2. That (i) implies
(v) is Proposition 3.4. Conversely, suppose condition (v) holds. Then

λR(F2/A2) = λR(F/B) + (r + 1)λR(F/A).

From the proof of Proposition 3.4, we have

(r + 1)λR(F/A) = λR(F1B1/A1B1) and λR(F1B1/B2) = (r + 1)λR(F/B).

By Proposition 3.3, λR(F2/B2) = (r + 2)λR(F/B). Thus

λR(F2/A2) = λR(F/B) + (r + 1)λR(F/A)

= λR(F2/B2)− λR(F1B1/B2) + λR(F1B1/A1B1)

= λR(F2/A1B1).

In other words, A2 = B1A1. Thus, (v) implies (i). Finally, if (i) and (ii) are equiv-
alent, then if (i) holds, (ii) and (iii) hold, and the proof of Theorem 4.1 shows that
(iv) holds. Conversely, suppose that (iv) holds. Retaining our standard notation,
it follows that the images of C1, . . . , Cr+1 in A/IA form a regular sequence. Thus
BA ∩ IA = IBA. Therefore IB = IA ∩ B. By Corollary 2.3 (applied to B),
IA ⊆ B, so IA = IB. By our assumption, (i) holds.

For part (ii), recall that a Cohen-Macaulay local ring (S, n) is said to have
minimal multiplicity if e(S) = µ(n) − dim(S) + 1. Since A is Cohen-Macaulay if
and only if the reduction number of A is less than or equal to 1, it remains to show
that

e(AP) = µ(PAP )− dim(AP) + 1 if and only if µ(A) = ordR(A) + r.

However, µ(PAP) = m + 2 and dim(AP) = r + 2. Therefore, AP has minimal
multiplicity if and only if e(AP) = m − r + 1. On the other hand, let B ⊆ A be
a minimal reduction. Then e(AP) = e(BQ) = ordR(J) + 1, where J denotes the
ideal of maximal minors associated to B. Note that the second equality follows,
since by Proposition 1.1, B is a polynomial ring modulo an element having order
ordR(J) + 1. Since ordR(Ir(A)) = ordR(J), the desired equivalence holds. The
second statement in part (ii) now follows by invoking Theorem 2.1.
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