PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 9, Pages 2601-2609 S 0002-9939(99)04880-7 Article electronically published on April 15, 1999

ON THE EXISTENCE OF MAXIMAL COHEN-MACAULAY MODULES OVER p th ROOT EXTENSIONS

DANIEL KATZ

(Communicated by Wolmer V. Vasconcelos)

ABSTRACT. Let S be an unramified regular local ring having mixed characteristic p > 0 and R the integral closure of S in a pth root extension of its quotient field. We show that R admits a finite, birational module M such that depth(M) = dim(R). In other words, R admits a maximal Cohen-Macaulay module.

1. INTRODUCTION

Let R be a Noetherian local ring. In considering the local homological conjectures over R, one may reduce to the situation where R is a finite extension of an unramified regular local ring S. Therefore, it is a natural point of departure to assume that R is the integral closure of S in a "well-behaved" algebraic extension of its quotient field. Certainly, when S has mixed characteristic p > 0, one ought to consider the case that R is the integral closure of S in an extension of its quotient field obtained by adjoining the pth root of an element of S. This was done in [Ko] where it was shown that S is a direct summand of R, i.e., the Direct Summand Conjecture holds for the extension $S \subseteq R$. In this note we show that a number of the other local homological conjectures hold for such R by showing that R admits a finite, birational module M satisfying depth(M) = dim(R) (see [H]). In other words, R admits a maximal Cohen-Macaulay module. Such a module is necessarily free over S. Aside from regularity, one of the crucial points in the mixed characteristic case seems to be that S/pS is integrally closed. By contrast, using an example from [HM], Roberts has noted that even if S is a Cohen-Macaulay UFD and R is the integral closure of S in a quadratic extension of quotient fields, R needn't admit a finite, S-free module at all (see [R]). For the example in question, S has mixed characteristic 2, yet S/2S is not integrally closed.

2. Preliminaries

In this section we will establish our notation and present a few preliminary observations. Throughout, S will be a Noetherian normal domain with quotient field L. We assume char(L) = 0. Fix $p \in \mathbb{Z}$ to be a prime integer and suppose that either p is a unit in S or that pS is a (proper) prime ideal and S/pS is integrally closed. Let $f \in S$ be an element that is not a pth power and select Wan indeterminate. Write $F(W) := W^p - f \in S[W]$, a monic irreducible polynomial

©1999 American Mathematical Society

Received by the editors August 26, 1997 and, in revised form, November 26, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 13B21, 13B22, 13H05, 13H15.

and let R denote the integral closure of S in $K := L(\omega)$, for ω a root of F(W). Thus R is the integral closure of $S[\omega]$.

Our strategy in this paper is to exploit the fact that R can be realized as J^{-1} for a suitable ideal $J \subseteq S[\omega]$. The study of birational algebras of the form J^{-1} seems to have captured the attention of a number of researchers during the last few years, albeit in notably different contexts (see [EU], [Ka], [KU], [MP] and [V]). Since J^{-1} inherits S_2 from $S[\omega]$, this means that in attempting to "construct" R, if the candidate is J^{-1} for some J, then only the condition R_1 must be checked.

The following proposition summarizes some of the conditions relating R to J^{-1} for suitable J that we will call upon in the next section. Parts (i) and (ii) of the proposition were inspired by the main results in [V] and Proposition 3.1 in [KU]. Special cases of part (iii) of the proposition have apparently been known to algebraic geometers for a long while. For some historical comments and fascinating variations, the interested reader should consult [KU].

Proposition 2.1. Let A be a Noetherian domain satisfying S_2 and assume that A', the integral closure of A, is a finite A-module.

- (i) Suppose $\{P_1, \ldots, P_n\}$ are the height one primes of A for which A_{P_i} is not a DVR. If for each $1 \le i \le n$, $rad(J_i) = P_i$ and $(J_i^{-1})_{P_i} = A'_{P_i}$, then $A' = J^{-1}$, for $J := J_1 \cap \cdots \cap J_n$.
- (ii) If A ≠ A', then A' = J⁻¹, for some height one unmixed ideal J ⊆ A. Moreover, if A is Gorenstein in codimension one, then A' = J⁻¹ for a unique height one unmixed ideal J satisfying J ⋅ J⁻¹ = J = (J⁻¹)⁻¹.
- (iii) Suppose that A = B/(F) for F ∈ B a principal prime and J̃ ⊆ B is a grade two ideal arising as the ideal of n × n minors of an (n + 1) × n matrix φ. Assume further that F ∈ J̃ and set J := J̃/(F). Let Δ₁,..., Δ_{n+1} denote the signed minors of φ, write F := b₁Δ₁ + ··· + b_{n+1}Δ_{n+1} and let φ' denote the (n+1)×(n+1) matrix obtained by augmenting the column of b'_is to φ (so F is the determinant of φ'). Then J⁻¹ can be generated as an A-module by {ψ_{1,1}/δ₁,..., ψ_{n+1,n+1}/δ_{n+1} = 1}, where ψ_{i,i} denotes the image in A of the (i, i)th cofactor of φ' and δ_i denotes the image of Δ_i in A (which we assume to be non-zero). Moreover, p.d._B(J) = p.d._B(J⁻¹) = 1.

Proof. To prove (i), note that $J_Q^{-1} = A'_Q$ for all height one primes $Q \subseteq A$. Since J^{-1} and A' are birational and satisfy S_2 , we obtain $J^{-1} = A'$. For the first statement in (ii), we may, by part (i), consider the case where A is a one-dimensional local ring which is not a DVR. Let Q denote the maximal ideal of A. Then $QQ^{-1} \subseteq Q$. Since it always holds that $Q \subseteq QQ^{-1}$, we have $Q = QQ^{-1}$. Therefore Q^{-1} is a finite ring extension properly containing A (since for any ideal J, $(JJ^{-1})^{-1}$ is a ring). If $Q^{-1} = A'$, we're done. If not, then since Q^{-1} inherits S_2 from A, Q^{-1} contains a height one prime P for which $(Q^{-1})_P$ is not a DVR. Thus P^{-1} is a finite ring extension properly containing Q^{-1} . An easy calculation shows that P^{-1} , considered over Q^{-1} , equals $(QP)^{-1}$, for some $J \subseteq A$. Now suppose that A is Gorenstein in codimension one. Then $I_Q = ((I^{-1})^{-1})_Q$, for all ideals $I \subseteq A$ and all height one primes $Q \subseteq A$. Therefore, $I = (I^{-1})^{-1}$, for all height one, unmixed ideals $I \subseteq A$ and all numixed, then J = K. Finally, since J^{-1} is a ring, $(J \cdot J^{-1}) \cdot J^{-1} = J \cdot J^{-1}$, so $J \cdot J^{-1} \subseteq (J^{-1})^{-1} = J$. Thus, $J \cdot J^{-1} = J$, as desired. For (iii), the description of

the generators for J^{-1} follows either from [MP], Proposition 3.14 or [KU], Lemma 2.5. For the second part of (iii), see [KU], Proposition 3.1.

Returning to our basic set-up, we note that since S is a normal domain, $S[\omega]$ satisfies Serre's condition S_2 . Moreover, since char(S) = 0, R is a finite S-module. Thus Proposition 2.1 applies. In Section 3 we will identify the ideal $J \subseteq S[\omega]$ for which $J^{-1} = R$. In the meantime, we observe that if p is not a unit in S, then there is a unique height one prime in $S[\omega]$ containing p. Suppose $p \mid f$. Then $P := (\omega, p)$ is clearly the unique height one prime in $S[\omega]$ containing p. Moreover, $S[\omega]_P$ is a DVR if and only if $p^2 \nmid f$. Suppose $p \nmid f$. If f is not a pth power modulo pS, then f is not a pth power over the quotient field of S/pS (since S/pS is integrally closed) and it follows that F(W) is irreducible mod pS. Thus (p, F(W)) is the unique height two prime in S[W] containing F(W) and p, so $pS[\omega]$ is the unique height one prime in $S[\omega]$ containing p. If $f \equiv h^p \mod pS$, then $F(W) \equiv (W-h)^p \mod pS$ and it follows that $(\omega - h, p)S[\omega]$ is the unique height one prime in $S[\omega]$ containing p. Thus, in all cases, there exists a unique height one prime in $S[\omega]$ lying over pS. For the remainder of the paper, we call this prime P. Suppose $f = h^p + gp$, so $P = (\omega - h, p)S[\omega]$. Write $\tilde{P} := (W - h, p)S[W]$ for the preimage of P in S[W]. Then

$$F(W) = W^{p} - h^{p} - gp = (W^{p-1} + \dots + h^{p-1}) \cdot (W - h) - gp$$

In S[W], $W^{p-1} + \cdots + h^{p-1} \equiv ph^{p-1}$ modulo (W - h), so $W^{p-1} + \cdots + h^{p-1} \in \tilde{P}$. Thus, $F(W) \in \tilde{P}^2$ if and only if $p \mid g$. In other words, in all cases, P_P is not principal if and only if $f = h^p + p^2 g$, for some $h, g \in S$.

3. The main result

In this section we will present our main result, Theorem 3.8. Lemmas 3.2 and 3.3 will enable us to describe the ideal $J \subseteq S[\omega]$ for which $R = J^{-1}$. We will then see in the proof of Theorem 3.8 that the module we seek has the form I^{-1} , for some ideal $I \subseteq J$.

Lemma 3.1. Suppose p is not a unit in S, $h \in S \setminus pS$ and p = 2k + 1. Set

$$C := \sum_{j=1}^{k} (-1)^{j+1} \binom{p}{j} (W \cdot h)^{j} [W^{p-2j} - h^{p-2j}],$$

 $C':=C\cdot (p(W-h))^{-1} \text{ and } \tilde{P}:=(p,W-h)\cdot S[W]. \text{ Then } C'\not\in \tilde{P}.$

Proof. Note that since p divides $\binom{p}{j}$ for all $1 \leq j \leq k$, C' is a well-defined element of S[W]. Now, $C' \notin \tilde{P}$ if and only if the residue class of C' modulo W - h, as an element of S, does not belong to pS if and only if $\sum_{j=1}^{k} (-1)^{j+1} \binom{p}{j} \frac{h^{p-1}}{p} (p-2j)$, as an element of S, is not divisible by p. Since

$$\sum_{j=1}^{k} (-1)^{j+1} \binom{p}{j} h^{p-1}$$

is divisible by p and h^{p-1} is not divisible by p, it is enough to show that

$$\sum_{j=1}^{k} (-1)^{j+1} \binom{p}{j} \frac{2j}{p}$$

D. KATZ

is not divisible by p, as an element of S. However,

$$\sum_{j=1}^{k} (-1)^{j+1} \binom{p}{j} \frac{2j}{p} = 2 \cdot \sum_{j=1}^{k} (-1)^{j+1} \binom{p-1}{j-1} = (-1)^{k+1} \binom{2k}{k}$$

Because p does not divide $\binom{2k}{k}$ in \mathbb{Z} , p does not divide $\binom{2k}{k}$ as an element of S (since $pS \neq S$). Thus $C' \notin \tilde{P}$, as claimed.

For the next lemma, we borrow the following terminology from [Kap]. We shall say that $f \in S$ is "square-free" if $qS_q = fS_q$ for all height one prime ideals $q \subseteq S$ containing f. Since $F'(\omega) \cdot R \subseteq S[\omega]$ and $\omega \cdot F'(\omega) = p \cdot f$, it follows from the discussion in Section 2 that if f is square-free, then either $R = S[\omega]$ or P is the only height one prime for which $S[\omega]_P$ is not a DVR.

Lemma 3.2. Suppose $f \in S$ is square-free and $S[\omega] \neq R$ (thus p is not a unit in S). Then $R = P^{-1}$. Moreover, R is a free S-module.

Proof. We first consider the case p > 2. Since $S[\omega]$ is not integrally closed, we have $f = h^p + p^2 g$, for some h not divisible by p and $g \neq 0$ in S. Thus, $P = (\omega - h, p)S[\omega]$. It follows from the proof and statement of Proposition 2.1 that P^{-1} is a ring and that P^{-1} is generated as an $S[\omega]$ -module by $\{1, \tau\}$, for

$$\tau = \frac{1}{p} \cdot \sum_{j=1}^{p} \omega^{p-j} h^{j-1} = \frac{g \cdot p}{\omega - h}$$

Therefore $P^{-1} = S[\omega, \tau]$. If we show that $S[\omega, \tau]$ satisfies R_1 , then $S[\omega, \tau] = R$, since P^{-1} satisfies S_2 (as an $S[\omega]$ -module and as a ring). Since f is square-free, it suffices to show that P_Q^{-1} is a DVR for each height one $Q \subseteq P^{-1}$ containing p. To do this, we find an equation satisfied by τ over $S[\omega]$. On the one hand,

$$(\omega - h) \cdot \tau = 0 \cdot (w - h) + g \cdot p.$$

On the other hand,

$$p \cdot \tau = (\omega - h)^{p-2} \cdot (\omega - h) + c' \cdot p_{\pm}$$

where c' denotes the image in $S[\omega]$ of the element $C' \in S[W]$ defined in Lemma 3.1. Therefore, by the standard determinant argument, τ satisfies

$$l(T) := T^{2} - c'T - g(\omega - h)^{p-2}$$

over $S[\omega]$. Now, let $\pi : S[W,T] \to S[\omega,\tau]$ denote the canonical map and set $H := ker(\pi)$ and let $Q \subseteq S[\omega,\tau]$ be any height one prime containing p. Then Q corresponds to a height three prime $Q' \subseteq S[W,T]$ containing p and H. Since $P \subseteq Q$ and $H \subseteq Q', W - h$ and $T^2 - C'T - g(W - h)^{p-2}$ belong to Q'. Therefore, Q' = (p, W - h, T) or Q' = (p, W - h, T - C'). Suppose Q' = (p, W - h, T). Then $Q = (p, \omega - h, \tau)S[\omega, \tau]$. We have

$$\tau^2 - c'\tau - g(\omega - h)^{p-2} = 0$$
 and $p(\tau - c') = (\omega - h)^{p-1}$.

By Lemma 3.1, $c' \notin Q$, so $\tau - c' \notin Q$, and it follows that $Q_Q = (\omega - h)_Q$. Now suppose Q' = (p, W - h, T - C'). Then $Q = (p, \omega - h, \tau - c')S[\omega, \tau]$. Since

$$\tau^2 - c'\tau - g(\omega - h)^{p-2} = 0$$
 and $(\omega - h) \cdot \tau = g \cdot p_{\tau}$

it follows that $Q_Q = (p)_Q$ (since $\tau \notin Q$, by Lemma 3.1). Thus, in either case, Q_Q is principal, so $R = S[\omega, \tau] = P^{-1}$.

2604

The proof is similar if p = 2 and $f = h^2 + 4g$, with $2 \nmid h$. One notes that $P^{-1} = S[\omega, \tau] = S[\tau]$, for $\tau := \frac{h+\omega}{2}$ and that τ satisfies $l(T) := T^2 - hT - g$. To show $R = S[\tau]$, one uses the fact that l(T) and l'(T) are relatively prime over the quotient field of S/2S.

To see that R is a free S-module, we first note that R is clearly generated as an S-module by the set $\{1, \omega, \ldots, \omega^{p-1}, \tau, \tau\omega, \ldots, \tau\omega^{p-1}\}$. However, $\tau\omega = pg \cdot 1 + h \cdot \tau$. This implies that $\tau\omega^i$ belongs to the S-module generated by $\{1, \omega, \ldots, \omega^{p-1}, \tau\}$, for all $1 \leq i \leq p-1$. Moreover, since

$$\omega^{p-1} = -h^{p-1} \cdot 1 - h^{p-2} \cdot \omega - \dots - h \cdot \omega^{p-2} + p \cdot \tau,$$

we may dispose of ω^{p-1} as well. Thus, R is generated as an S-module by the set $\{1, \omega, \ldots, \omega^{p-2}, \tau\}$. Since these elements are clearly linearly independent over S, R is a free S-module.

Lemma 3.3. Suppose $f = \lambda a^e$, with $a \in S$ a prime element, λ a unit in S and $2 \leq e < p$. If p is not a unit in S, assume a = p. Then there exist integers $1 \leq s_1 < s_2 < \cdots < s_{e-1} < p$ satisfying

(i)
$$s_{e-i} \le p - s_i, \ 1 \le i \le e - 1.$$

(ii) $R = J^{-1}$ for $J := (\omega^{s_{e-1}}, \omega^{s_{e-2}}a, \dots, \omega^{s_1}a^{e-2}, a^{e-1})S[\omega].$

Proof. We begin by noting that either condition in the hypothesis implies that $Q := (\omega, a)S[\omega]$ is the only height one prime for which $S[\omega]_Q$ is not a DVR. Now, since p and e are relatively prime, we can find positive integers u and v such that $1 = u \cdot p + (-v) \cdot e$. If we set $\tau := \frac{a^u}{\omega^v}$, then $\tau^e = \lambda^{-u}\omega$ and $\tau^p = \lambda^{-v}a$. It follows that $S[\omega, \tau] = S[\tau] = R$, since either p is a unit and a is square-free or p is not a unit and $(\tau, p)S[\tau] = \tau S[\tau]$. Thus, $\{1, \tau, \ldots, \tau^{e-1}\}$ generate R as an $S[\omega]$ -module. Since u and e are relatively prime, the set $\{uj\}_{1 \leq j \leq e-1}$, when reduced mod e, equals the set $\{i\}_{1 \leq i \leq e-1}$. This will enable us to replace the generators $\{1, \tau, \ldots, \tau^{e-1}\}$ by $\{1, \frac{\lambda a}{\omega^{s_1}}, \ldots, \frac{\lambda a^{e-1}}{\omega^{s_e-1}}\}$. To elaborate, given $1 \leq i \leq e-1$, there is a unique $1 \leq j_i \leq e-1$ such that $uj_i \equiv i \pmod{e}$. Write $uj_i = t_i e+i, t_i \geq 0$. Then

$$(1+ve)j_i = puj_i = t_iep + ip,$$

so $(vj_i)e + j_i = (t_ip)e + ip$. If we write $ip = s_ie + r$, with $0 \le r < e$, then uniqueness of the euclidean algorithm gives $vj_i = t_ip + s_i$ and $r = j_i$. Thus, $\tau^{j_i} = \frac{a^{uj_i}}{\omega^{vj_i}} = \frac{a^i}{\lambda^{t_i}\omega^{s_i}}$ and $ip = s_ie + j_i$. For i = e - 1, this yields $s_{e-1} < p$. Moreover, $p = (s_{i+1} - s_i)e + (j_{i+1} - j_i)$, so $s_{i+1} - s_i > 0$. Similarly, $ep = (s_{e-i} + s_i)e + (j_{e-i} + j_i)$, so $s_{e-i} + s_i \le p$. Thus, s_1, \ldots, s_{e-1} have the required numerical properties.

We now have $\{1, \tau, \ldots, \tau^{e-1}\} = \{1, \frac{a}{\lambda^{i_1} \omega^{s_1}}, \ldots, \frac{a^{e-1}}{\lambda^{i_{e-1}} \omega^{s_{e-1}}}\}$. Multiplying by appropriate powers of λ allows us to use $\{1, \frac{\lambda a}{\omega^{s_1}}, \ldots, \frac{\lambda a^{e-1}}{\omega^{s_{e-1}}}\}$ as a generating set for R over $S[\omega]$. In Proposition 2.1 take $A := S[\omega], B := S[W], F := F(W)$ and \tilde{J} the ideal of $(e-1) \times (e-1)$ signed minors of the $e \times (e-1)$ matrix

$$\phi = \begin{pmatrix} -a & 0 & \cdots & 0 & 0 \\ W^{\alpha_{e-1}} & -a & \cdots & 0 & 0 \\ 0 & W^{\alpha_{e-2}} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & W^{\alpha_2} & -a \\ 0 & 0 & \cdots & 0 & W^{\alpha_1} \end{pmatrix}$$

D. KATZ

with $\alpha_1 + \alpha_2 + \cdots + \alpha_i = s_i$, for $1 \leq i \leq e-1$. To obtain ϕ' , we augment ϕ by the column whose transpose is $(W^{p-c}, 0, \ldots, 0, (-1)^e \lambda a)$ (so $det(\phi') = F(W)$). Then J^{-1} is generated as an $S[\omega]$ -module by $\{1, \frac{\lambda a}{\omega^{s_1}}, \ldots, \frac{\lambda a^{e-1}}{\omega^{s_{e-1}}}\}$. Thus, $R = S[\omega, \tau] = J^{-1}$ for $J = (\omega^{s_{e-1}}, \omega^{s_{e-2}} a, \ldots, a^{e-1})$, as desired. \Box

For a proof of the next lemma, see [Ka], Lemma 4.1.

Lemma 3.4. In S[W] consider the ideals $H := (W^{e_k}, W^{e_{k-1}}a_1, \dots, W^{e_1}a_{k-1}, a_k)$ and $K := (W^{f_t}, W^{f_{t-1}}b_1, \dots, W^{f_1}b_{t-1}, b_t)$, where

- (i) $e_k > e_{k-1} > \cdots > e_1$ and $f_t > f_{t-1} > \cdots > f_1$.
- (ii) $a_1 | a_2 | \cdots | a_k$ and $b_1 | b_2 | \cdots | b_t$.
- (iii) Each a_i and b_j is a product of prime elements.
- (iv) For all i and j, a_i and b_j have no prime factor in common.

Then there exist integers $g_s > \cdots > g_1$ and products of primes $c_1 | c_2 | \cdots | c_s$ such that $H \cap K = (W^{g_s}, W^{g_{s-1}}c_1, \ldots, W^{g_1}c_{s-1}, c_s)$. Moreover, H, K and $H \cap K$ are all grade two perfect ideals.

Lemma 3.5. Let A be a domain and $I \subseteq J$ ideals such that J^{-1} is a ring. Then I^{-1} is a J^{-1} -module if and only if $I^{-1} = (I \cdot J^{-1})^{-1}$. In particular, if $x \in J$ and $x \cdot J^{-1} \subseteq J$, then $(x \cdot J^{-1})^{-1}$ is a J^{-1} -module.

Proof. We first observe $(I \cdot J^{-1})^{-1}$ is always a J^{-1} -module. Indeed, $y \in (I \cdot J^{-1})^{-1}$ implies $I \cdot J^{-1}y \subseteq R$. Thus $J^{-1}J^{-1}y = J^{-1}y \subseteq I^{-1}$, so $(I \cdot J^{-1})(J^{-1}y) \subseteq R$ and $J^{-1}y \subseteq (I \cdot J^{-1})^{-1}$. Therefore, $(I \cdot J^{-1})^{-1}$ is a J^{-1} -module and the first statement follows easily from this. For the second statement, we note that if $x \cdot J^{-1} \subseteq J$, then for $I := x \cdot J^{-1}$, $I \cdot J^{-1} = x \cdot J^{-1}J^{-1} = x \cdot J^{-1} = I$. Thus, $I^{-1} = (I \cdot J^{-1})^{-1}$, so I^{-1} is a J^{-1} -module by the first statement. □

Remark 3.6. Proposition 2.2 in [Ko] states that R is a free S-module, if S is an unramified regular local ring and $p \mid f$. The proof shows that R is a free S-module just under the assumption that f can be written as a product of primes and S/pS is a domain. In [Ko], Proposition 1.5, it is shown that if S is a UFD, then there exists a free S-module $F \subseteq R$ such that pR is contained in F. Thus, if p is a unit in S, then R is also a free S-module. Finally, if f is square-free, R is a free S-module by Lemma 3.2. We record these facts in a common setting in the following proposition. For a version of the proposition for p^n th root extensions, see [Ka], Theorem 4.2.

Proposition 3.7. In addition to our standing hypotheses, assume that S is a UFD. Then R is a free S-module in each of the following cases:

- (i) p is a unit in S.
- (ii) p is not a unit and either $p \mid f$ or f is square-free.

We are now ready for our theorem.

Theorem 3.8. Assume that S is a regular local ring. Then there exists a finite, birational R-module M satisfying depth_S(M) = dim(R). In other words, M is a maximal Cohen-Macaulay module for R.

Proof. By Proposition 3.7, R is a free S-module, and therefore Cohen-Macaulay, unless we assume that p is not a unit in S, $p \nmid f$ and f is not square-free. In particular, we may assume that f is not a unit in S. Factor f as a unit λ times prime elements a_i , say $f = \lambda a_1^{e_1} \cdots a_r^{e_r}$. We may assume that for $1 \leq t \leq r$, $1 < e_i < p$, if $1 \leq i \leq t$ and $e_i = 1$, if $t < i \leq r$. Set $Q_i := (\omega, a_i)S[\omega]$ for $1 \leq i \leq t$. For

2606

each $1 \leq i \leq t$ choose $s(i, 1) < \cdots < s(i, e_i - 1)$ satisfying the conclusion of Lemma 3.3 over $S[\omega]_{Q_i}$ and set $J_i := (\omega^{s(i,e_i-1)}, \omega^{s(i,e_i-2)}a_i, \ldots, \omega^{s(i,1)}a_i^{e_i-2}, a_i^{e_i-1})S[\omega]$. Thus, $R_{Q_i} = (J_i^{-1})_{Q_i}$ for all *i*. We now have two cases to consider. Suppose first that *f* is not a *p*th power modulo p^2S . We will show that *R* is Cohen-Macaulay. By our discussion in section two, Q_1, \ldots, Q_t are exactly the height one primes $Q \subseteq S[\omega]$ for which $S[\omega]_Q$ is not a DVR, so by Proposition 2.1 and Lemma 3.3, $R = J^{-1}$ for $J := J_1 \cap \cdots \cap J_t$. Set $B := S[W]_{(W,N)}$ (for *N*, the maximal ideal of *S*) and use "tilde" to denote pre-images in *B*. By Lemma 3.4, $\tilde{J} \subseteq B$ is a grade two perfect ideal. Therefore, $p.d_{\cdot B}(J) = p.d_{\cdot B}(J^{-1}) = 1$, by Proposition 2.1(iii). Thus, $depth_B(J^{-1}) = dim(B) - 1$, so $depth_S(R) = dim(R)$, which is what we want.

Suppose that f is a pth power modulo p^2S . Write $f = h^p + p^2g$, for $h, g \in S$, $p \nmid h$. Then $P = (\omega - h, p)$. Moreover, P and Q_1, \ldots, Q_t are the height one primes $Q \subseteq S[\omega]$ for which $S[\omega]_Q$ is not a DVR. By Proposition 2.1 and Lemma 3.2, $R = J^{-1}$, for $J := J_1 \cap \cdots \cap J_t \cap P$. Now, as in the proof of Lemma 3.3, J_i^{-1} is generated as an $S[\omega]$ -module by the set $\{1, \frac{\lambda_i a_i}{\omega^{s(i,1)}}, \ldots, \frac{\lambda_i a_i^{e_i-1}}{\omega^{s(i,e_i-1)}}\}$, where, for each $i, \lambda_i := \prod_{i \neq j=1}^r \lambda a_j^{e_j}$. Thus $K_i = (\omega^{p-s(i,1)}, \omega^{p-s(i,2)}a_i, \ldots, a_i^{e_i-1})S[\omega]$, for $K_i := a_i^{e_i-1} \cdot J_i^{-1}$ and $1 \leq i \leq t$. By Lemma 3.3, $K_i \subseteq J_i$, so upon setting $I := K_1 \cap \cdots \cap K_t \cap P$, it follows from Lemma 3.5 that I^{-1} is a J^{-1} -module (since this holds locally for every height one prime in $S[\omega]$). Taking $M := I^{-1}$, we will show that M is the required module. For this, we claim that $\tilde{I} \subseteq B$ is a grade two perfect ideal. If the claim holds, $1 = p.d_{\cdot B}(I) = p.d_{\cdot B}(I^{-1}) = p.d_{\cdot B}(M)$. Thus $depth_B(M) = dim(B) - 1$, so $depth_S(M) = dim(R)$, which is what we want.

To prove the claim, we set $\tilde{K} := \tilde{K}_1 \cap \cdots \cap \tilde{K}_t$ and consider the short exact sequence

$$0 \longrightarrow B/\tilde{I} \longrightarrow B/\tilde{K} \oplus B/\tilde{P} \longrightarrow B/(\tilde{K} + \tilde{P}) \longrightarrow 0.$$

Since K is a grade two perfect ideal (by Lemma 3.4), the Depth Lemma and the Auslander-Buchsbaum formula imply that \tilde{I} is a grade two perfect ideal, once we show $depth(B/(\tilde{K}+\tilde{P})) = dim(B)-3$. Set $a := a_1^{e_1-1} \cdots a_t^{e_t-1}$. We now argue that $\tilde{K}+\tilde{P} = (a, p, W-h)$. If we can show this, clearly $depth(B/(\tilde{K}+\tilde{P})) = dim(B)-3$ and we will have verified the claim. Take $\tilde{k} \in \tilde{K}$ and consider its image k in $K \subseteq S[\omega]$. Select $Q \subseteq S[\omega]$, a height one prime. If $Q = Q_i$, for some $1 \le i \le t$, then $k \in (a_i^{e_i-1}J_i^{-1})_{Q_i} = aR_{Q_i}$. If $Q \ne Q_i$ for any $1 \le i \le t$, then clearly $k \in aR_Q = R_Q$. It follows that $k \in aR \cap S[\omega]$. In other words, k is integral over the principal ideal $aS[\omega]$. Therefore, the image of k in $S[\omega]/(\omega - h, p) = S/pS$ is integrally closed, the image of k in S/pS is a multiple of the image of a. Therefore, $\tilde{k} \in (a, p, W - h)$ in S[W]. It follows that $\tilde{K} \subseteq (a, p, W - h)$. Since $a \in \tilde{K}$, we obtain $\tilde{K} + \tilde{P} = (a, p, W - h)$, which is what we want. This completes the proof of Theorem 3.8.

Remark 3.9. Of course if S is an unramified regular local ring, S fulfills our standing hypotheses, so Theorem 3.8 applies. However, the theorem also applies to certain ramified regular local rings. For instance, take T to be the ring $\mathbb{Z}[X_1, \ldots, X_d]$ localized at (p, X_1, \ldots, X_d) and let $H \in \mathbb{Z}[X_1, \ldots, X_d]$ be any polynomial in $(X_1, \ldots, X_d)^2$ for which $\mathbb{Z}_p[X_1, \ldots, X_d]/(\overline{H})$ is an integrally closed domain. If we set S := T/(p - H), then S is a ramified regular local ring and S/pS is an integrally closed domain.

D. KATZ

We close with an example where R is not a free S-module, yet R admits a finite, birational module which is a free S-module. The example is an unramified variation of Koh's Example (2.4).

Example 3.10. Let S be an unramified regular local ring having mixed characteristic 3 and take $x, y \in S$ such that 3, x, y form part of a regular system of parameters. Set $a := xy^4 + 9$, $b := x^4y + 9$ and $f := ab^2$, so $\omega^3 = f = ab^2 = h^3 + 9g$, for $h = x^3y^2$. From Lemmas 3.2 and 3.3 it follows that $R = (Q \cap P)^{-1}$ for $Q := (\omega, b)$ and $P := (\omega - h, 3)$. Set $J := Q \cap P$. We first show that $R = J^{-1}$ is not a free S-module. Suppose to the contrary that J^{-1} is free over S. As in the proof of Theorem 3.8, set $B := S[W]_{(N,W)}$ and use "tilde" to denote pre-images in B. Since J^{-1} is free over S, we have $p.d_{\cdot B}(J^{-1}) = 1$, so J^{-1} is a grade one perfect B-module. By [KU, Proposition 3.6], J is a grade one perfect B-module, so \tilde{J} is a grade two perfect ideal. On the other hand, $depth_B(B/\tilde{J}) = 1 + depth_B(B/(\tilde{Q} + \tilde{P}))$. But, $\tilde{Q} + \tilde{P} = (W, x^4y, x^3y^2, 3)B$, so $B/(\tilde{Q} + \tilde{P}) = S/(3, x^4y, x^3y^2)S$, which is easily seen to have depth equal to depth(S) - 3 = depth(B) - 4. This is a contradiction, so it must hold that R is not a free S-module.

Now, Q^{-1} is generated as an $S[\omega]$ -module by $\{1, \frac{ab}{\omega}\}$. If we set $K := b \cdot Q^{-1}$, then $K = (\omega^2, b)S[\omega]$. The proof of Theorem 3.8 shows that $M := (K \cap P)^{-1}$ is a finite, birational *R*-module satisfying $depth_S(M) = dim(R)$. In other words, M is an *R*-module which is free over S. To calculate a basis for M, one must calculate $K \cap P$ and then use Proposition 2.1. We leave it to the reader to check that $K \cap P = (\omega^2 - h^2 - 9x^2y^3, b(\omega - h), 3b)$. Therefore, $K \cap P = I_2(\phi)$ for

$$\phi = \begin{pmatrix} -b & 0\\ \omega + h & -3\\ -3x^2y^3 & \omega - h \end{pmatrix}.$$

The augmented matrix that determines $(K \cap P)^{-1} = M$ is the 3×3 matrix

$$\begin{pmatrix} -b & 0 & \omega \\ \omega + h & -3 & x^2 y^3 \\ -3x^2 y^3 & \omega - h & t \end{pmatrix},$$

where t is defined by the equation $x^5y^5 = ab + 3t$. By Proposition 2.1, M is generated as an $S[\omega]$ -module by the set $\{1, \gamma, \delta\}$, for

$$\gamma := \frac{-3t - x^2 y^3(\omega - h)}{\omega^2 - h^2 - 9x^2 y^3} = \frac{\omega}{b}, \qquad \delta := \frac{-bt + 3x^2 y^3 \omega}{b(\omega - h)} = \frac{\omega^2 + \omega h + h^2 + 9x^2 y^3}{3b}.$$

If we show that $\{1, \gamma, \delta\}$ also generate M as an S-module, then since they are clearly linearly independent over S, they form a basis for M as an S-module. To see that $\{1, \gamma, \delta\}$ generate M as an S-module, it suffices to show that $\omega, \omega \cdot \gamma$ and $\omega \cdot \delta$ can be expressed as S-linear combinations of $\{1, \gamma, \delta\}$. This clearly holds for ω . Using $9x^2y^3 = bx^2y^3 - x^6y^4$, we obtain

$$\omega \cdot \gamma = \frac{\omega^2}{b} = -x^2 y^3 \cdot 1 - h \cdot \gamma + 3 \cdot \delta.$$

Since $\omega^3 = h^3 + 9g$ and $g = x^5y^5 + bxy^4 + b^2$, we get

$$\omega \cdot \delta = (3xy^4 + 3b) \cdot 1 + 3x^2y^3 \cdot \gamma + h \cdot \delta,$$

and the example is complete.

2608

Acknowledgements

I would like to thank both the referee and Craig Huneke for their helpful comments on how to improve the readability of this paper.

References

- [EU] D. Eisenbud and B. Ulrich, Modules that are finite birational algebras, Illinois Jl. Math 141 No. 1 (1997), 10-15. CMP 97:08
- [H] M. Hochster, Topics in the homological theory of modules over commutative rings, C.B.M.S. Reg. Conf. Ser. in Math., vol. 24, A.M.S., Providence, RI, 1975. MR 51:8096
- [HM] M. Hochster and J.E. McLaughlin, Splitting theorems for quadratic ring extensions, Illinois Jl. Math. 127 No. 1 (1983), 94-103. MR 85c:13015
- [Kap] I. Kaplansky, Commutative Rings II, University of Chicago, Lecture Notes.
- [Ka] D. Katz, P^n th root extensions in mixed characteristic p, preprint (1997).
- [KU] S. Kleiman and B. Ulrich, Gorenstein algebras, symmetric matrices, self-linked ideals, and symbolic powers, Trans. AMS 349 (1997), 4973–5000. MR 98c:13019
- [Ko] J. Koh, Degree p extensions of an unramified regular local ring of mixed characteristic p > 0, J. of Algebra **99** (1986), 310-323. MR **87j**:13027
- [MP] D. Mond and R. Pellikaan, Fitting ideals and multiple points of analytic mappings, Springer Lecture Notes in Mathematics 1414 (1989), 107-161. MR 91e:32035
- [R] P. Roberts, Abelian extensions of regular local rings, Proc AMS 78, No 3 (1980), 307-319.
 MR 81a:13017
- [V] W. Vasconcelos, Computing the integral closure of an affine domain, Proc. AMS 113 (1991), 633-638. MR 92b:13013

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66045 *E-mail address*: dlk@math.ukans.edu