
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 127, Number 9, Pages 2601–2609
S 0002-9939(99)04880-7
Article electronically published on April 15, 1999

ON THE EXISTENCE OF MAXIMAL COHEN-MACAULAY
MODULES OVER p th ROOT EXTENSIONS

DANIEL KATZ

(Communicated by Wolmer V. Vasconcelos)

Abstract. Let S be an unramified regular local ring having mixed charac-
teristic p > 0 and R the integral closure of S in a pth root extension of its
quotient field. We show that R admits a finite, birational module M such that
depth(M) = dim(R). In other words, R admits a maximal Cohen-Macaulay
module.

1. Introduction

Let R be a Noetherian local ring. In considering the local homological conjec-
tures over R, one may reduce to the situation where R is a finite extension of an
unramified regular local ring S. Therefore, it is a natural point of departure to
assume that R is the integral closure of S in a “well-behaved” algebraic extension
of its quotient field. Certainly, when S has mixed characteristic p > 0, one ought to
consider the case that R is the integral closure of S in an extension of its quotient
field obtained by adjoining the pth root of an element of S. This was done in [Ko]
where it was shown that S is a direct summand of R, i.e., the Direct Summand
Conjecture holds for the extension S ⊆ R. In this note we show that a number of
the other local homological conjectures hold for such R by showing that R admits
a finite, birational module M satisfying depth(M) = dim(R) (see [H]). In other
words, R admits a maximal Cohen-Macaulay module. Such a module is necessarily
free over S. Aside from regularity, one of the crucial points in the mixed character-
istic case seems to be that S/pS is integrally closed. By contrast, using an example
from [HM], Roberts has noted that even if S is a Cohen-Macaulay UFD and R is
the integral closure of S in a quadratic extension of quotient fields, R needn’t admit
a finite, S-free module at all (see [R]). For the example in question, S has mixed
characteristic 2, yet S/2S is not integrally closed.

2. Preliminaries

In this section we will establish our notation and present a few preliminary
observations. Throughout, S will be a Noetherian normal domain with quotient
field L. We assume char(L) = 0. Fix p ∈ Z to be a prime integer and suppose
that either p is a unit in S or that pS is a (proper) prime ideal and S/pS is
integrally closed. Let f ∈ S be an element that is not a pth power and select W
an indeterminate. Write F (W ) := W p− f ∈ S[W ], a monic irreducible polynomial
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and let R denote the integral closure of S in K := L(ω), for ω a root of F (W ).
Thus R is the integral closure of S[ω].

Our strategy in this paper is to exploit the fact that R can be realized as J−1

for a suitable ideal J ⊆ S[ω]. The study of birational algebras of the form J−1

seems to have captured the attention of a number of researchers during the last
few years, albeit in notably different contexts (see [EU], [Ka], [KU], [MP] and [V]).
Since J−1 inherits S2 from S[ω], this means that in attempting to “construct” R,
if the candidate is J−1 for some J , then only the condition R1 must be checked.

The following proposition summarizes some of the conditions relating R to J−1

for suitable J that we will call upon in the next section. Parts (i) and (ii) of
the proposition were inspired by the main results in [V] and Proposition 3.1 in
[KU]. Special cases of part (iii) of the proposition have apparently been known to
algebraic geometers for a long while. For some historical comments and fascinating
variations, the interested reader should consult [KU].

Proposition 2.1. Let A be a Noetherian domain satisfying S2 and assume that
A′, the integral closure of A, is a finite A-module.

(i) Suppose {P1, . . . , Pn} are the height one primes of A for which APi is not a
DVR. If for each 1 ≤ i ≤ n, rad(Ji) = Pi and (J−1

i )Pi = A′Pi
, then A′ = J−1,

for J := J1 ∩ · · · ∩ Jn.
(ii) If A 6= A′, then A′ = J−1, for some height one unmixed ideal J ⊆ A. More-

over, if A is Gorenstein in codimension one, then A′ = J−1 for a unique
height one unmixed ideal J satisfying J · J−1 = J = (J−1)−1.

(iii) Suppose that A = B/(F ) for F ∈ B a principal prime and J̃ ⊆ B is a grade
two ideal arising as the ideal of n × n minors of an (n + 1) × n matrix φ.
Assume further that F ∈ J̃ and set J := J̃/(F ). Let ∆1, . . . ,∆n+1 denote
the signed minors of φ, write F := b1∆1 + · · ·+ bn+1∆n+1 and let φ′ denote
the (n+1)× (n+1) matrix obtained by augmenting the column of b′is to φ (so
F is the determinant of φ′). Then J−1 can be generated as an A-module by
{ψ1,1/δ1, . . . , ψn+1,n+1/δn+1 = 1}, where ψi,i denotes the image in A of the
(i, i)th cofactor of φ′ and δi denotes the image of ∆i in A (which we assume
to be non-zero). Moreover, p.d.B(J) = p.d.B(J−1) = 1.

Proof. To prove (i), note that J−1
Q = A′Q for all height one primesQ ⊆ A. Since J−1

and A′ are birational and satisfy S2, we obtain J−1 = A′. For the first statement
in (ii), we may, by part (i), consider the case where A is a one-dimensional local
ring which is not a DVR. Let Q denote the maximal ideal of A. Then QQ−1 ⊆ Q.
Since it always holds that Q ⊆ QQ−1, we have Q = QQ−1. Therefore Q−1 is a
finite ring extension properly containing A (since for any ideal J , (JJ−1)−1 is a
ring). If Q−1 = A′, we’re done. If not, then since Q−1 inherits S2 from A, Q−1

contains a height one prime P for which (Q−1)P is not a DVR. Thus P−1 is a
finite ring extension properly containing Q−1. An easy calculation shows that P−1,
considered over Q−1, equals (QP )−1, considered over A. Iterating this process
shows we eventually obtain A′ = J−1, for some J ⊆ A. Now suppose that A is
Gorenstein in codimension one. Then IQ = ((I−1)−1)Q, for all ideals I ⊆ A and all
height one primesQ ⊆ A. Therefore, I = (I−1)−1, for all height one, unmixed ideals
I ⊆ A. In particular, this holds for J . Moreover, if J−1 = A′ = K−1, for K height
one and unmixed, then J = K. Finally, since J−1 is a ring, (J ·J−1) ·J−1 = J ·J−1,
so J ·J−1 ⊆ (J−1)−1 = J . Thus, J ·J−1 = J , as desired. For (iii), the description of
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the generators for J−1 follows either from [MP], Proposition 3.14 or [KU], Lemma
2.5. For the second part of (iii), see [KU], Proposition 3.1.

Returning to our basic set-up, we note that since S is a normal domain, S[ω]
satisfies Serre’s condition S2. Moreover, since char(S) = 0, R is a finite S-module.
Thus Proposition 2.1 applies. In Section 3 we will identify the ideal J ⊆ S[ω] for
which J−1 = R. In the meantime, we observe that if p is not a unit in S, then there
is a unique height one prime in S[ω] containing p. Suppose p | f . Then P := (ω, p)
is clearly the unique height one prime in S[ω] containing p. Moreover, S[ω]P is a
DVR if and only if p2 - f . Suppose p - f . If f is not a pth power modulo pS, then f
is not a pth power over the quotient field of S/pS (since S/pS is integrally closed)
and it follows that F (W ) is irreducible mod pS. Thus (p, F (W )) is the unique
height two prime in S[W ] containing F (W ) and p, so pS[ω] is the unique height
one prime in S[ω] containing p. If f ≡ hp mod pS, then F (W ) ≡ (W −h)p mod pS
and it follows that (ω− h, p)S[ω] is the unique height one prime in S[ω] containing
p. Thus, in all cases, there exists a unique height one prime in S[ω] lying over pS.
For the remainder of the paper, we call this prime P . Suppose f = hp + gp, so
P = (ω − h, p)S[ω]. Write P̃ := (W − h, p)S[W ] for the preimage of P in S[W ].
Then

F (W ) = W p − hp − gp = (W p−1 + · · ·+ hp−1) · (W − h)− gp.

In S[W ], W p−1 + · · ·+ hp−1 ≡ php−1 modulo (W − h), so W p−1 + · · ·+ hp−1 ∈ P̃ .
Thus, F (W ) ∈ P̃ 2 if and only if p | g. In other words, in all cases, PP is not
principal if and only if f = hp + p2g, for some h, g ∈ S.

3. The main result

In this section we will present our main result, Theorem 3.8. Lemmas 3.2 and
3.3 will enable us to describe the ideal J ⊆ S[ω] for which R = J−1. We will then
see in the proof of Theorem 3.8 that the module we seek has the form I−1, for some
ideal I ⊆ J .

Lemma 3.1. Suppose p is not a unit in S, h ∈ S\pS and p = 2k + 1. Set

C :=
k∑

j=1

(−1)j+1

(
p

j

)
(W · h)j [W p−2j − hp−2j ],

C ′ := C · (p(W − h))−1 and P̃ := (p,W − h) · S[W ]. Then C′ 6∈ P̃ .

Proof. Note that since p divides
(
p
j

)
for all 1 ≤ j ≤ k, C′ is a well-defined element

of S[W ]. Now, C ′ 6∈ P̃ if and only if the residue class of C′ modulo W − h, as an
element of S, does not belong to pS if and only if

∑k
j=1(−1)j+1

(
p
j

)
hp−1

p (p− 2j), as
an element of S, is not divisible by p. Since

k∑
j=1

(−1)j+1

(
p

j

)
hp−1

is divisible by p and hp−1 is not divisible by p, it is enough to show that
k∑

j=1

(−1)j+1

(
p

j

)
2j
p
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is not divisible by p, as an element of S. However,
k∑

j=1

(−1)j+1

(
p

j

)
2j
p

= 2 ·
k∑

j=1

(−1)j+1

(
p− 1
j − 1

)
= (−1)k+1

(
2k
k

)
.

Because p does not divide
(
2k
k

)
in Z, p does not divide

(
2k
k

)
as an element of S (since

pS 6= S). Thus C′ 6∈ P̃ , as claimed.

For the next lemma, we borrow the following terminology from [Kap]. We shall
say that f ∈ S is “square-free” if qSq = fSq for all height one prime ideals q ⊆ S
containing f . Since F ′(ω) · R ⊆ S[ω] and ω · F ′(ω) = p · f , it follows from the
discussion in Section 2 that if f is square-free, then either R = S[ω] or P is the
only height one prime for which S[ω]P is not a DVR.

Lemma 3.2. Suppose f ∈ S is square-free and S[ω] 6= R (thus p is not a unit in
S). Then R = P−1. Moreover, R is a free S-module.

Proof. We first consider the case p > 2. Since S[ω] is not integrally closed, we have
f = hp+p2g, for some h not divisible by p and g 6= 0 in S. Thus, P = (ω−h, p)S[ω].
It follows from the proof and statement of Proposition 2.1 that P−1 is a ring and
that P−1 is generated as an S[ω]-module by {1, τ}, for

τ =
1
p
·

p∑
j=1

ωp−jhj−1 =
g · p
ω − h

.

Therefore P−1 = S[ω, τ ]. If we show that S[ω, τ ] satisfies R1, then S[ω, τ ] = R,
since P−1 satisfies S2 (as an S[ω]-module and as a ring). Since f is square-free, it
suffices to show that P−1

Q is a DVR for each height one Q ⊆ P−1 containing p. To
do this, we find an equation satisfied by τ over S[ω]. On the one hand,

(ω − h) · τ = 0 · (w − h) + g · p.
On the other hand,

p · τ = (ω − h)p−2 · (ω − h) + c′ · p,
where c′ denotes the image in S[ω] of the element C′ ∈ S[W ] defined in Lemma
3.1. Therefore, by the standard determinant argument, τ satisfies

l(T ) := T 2 − c′T − g(ω − h)p−2

over S[ω]. Now, let π : S[W,T ] → S[ω, τ ] denote the canonical map and set
H := ker(π) and let Q ⊆ S[ω, τ ] be any height one prime containing p. Then
Q corresponds to a height three prime Q′ ⊆ S[W,T ] containing p and H . Since
P ⊆ Q and H ⊆ Q′, W − h and T 2−C′T − g(W − h)p−2 belong to Q′. Therefore,
Q′ = (p,W − h, T ) or Q′ = (p,W − h, T − C ′). Suppose Q′ = (p,W − h, T ). Then
Q = (p, ω − h, τ)S[ω, τ ]. We have

τ2 − c′τ − g(ω − h)p−2 = 0 and p(τ − c′) = (ω − h)p−1.

By Lemma 3.1, c′ 6∈ Q, so τ − c′ 6∈ Q, and it follows that QQ = (ω − h)Q. Now
suppose Q′ = (p,W − h, T − C ′). Then Q = (p, ω − h, τ − c′)S[ω, τ ]. Since

τ2 − c′τ − g(ω − h)p−2 = 0 and (ω − h) · τ = g · p,
it follows that QQ = (p)Q (since τ 6∈ Q, by Lemma 3.1). Thus, in either case, QQ

is principal, so R = S[ω, τ ] = P−1.
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The proof is similar if p = 2 and f = h2 + 4g, with 2 - h. One notes that
P−1 = S[ω, τ ] = S[τ ], for τ := h+ω

2 and that τ satisfies l(T ) := T 2 − hT − g. To
show R = S[τ ], one uses the fact that l(T ) and l′(T ) are relatively prime over the
quotient field of S/2S.

To see that R is a free S-module, we first note that R is clearly generated as an
S-module by the set {1, ω, . . . , ωp−1, τ, τω, . . . , τωp−1}. However, τω = pg ·1+h ·τ .
This implies that τωi belongs to the S-module generated by {1, ω, . . . , ωp−1, τ}, for
all 1 ≤ i ≤ p− 1. Moreover, since

ωp−1 = −hp−1 · 1− hp−2 · ω − · · · − h · ωp−2 + p · τ,
we may dispose of ωp−1 as well. Thus, R is generated as an S-module by the set
{1, ω, . . . , ωp−2, τ}. Since these elements are clearly linearly independent over S,
R is a free S-module.

Lemma 3.3. Suppose f = λae, with a ∈ S a prime element, λ a unit in S and
2 ≤ e < p. If p is not a unit in S, assume a = p. Then there exist integers
1 ≤ s1 < s2 < · · · < se−1 < p satisfying

(i) se−i ≤ p− si, 1 ≤ i ≤ e − 1.
(ii) R = J−1 for J := (ωse−1 , ωse−2a, . . . , ωs1ae−2, ae−1)S[ω].

Proof. We begin by noting that either condition in the hypothesis implies that
Q := (ω, a)S[ω] is the only height one prime for which S[ω]Q is not a DVR. Now,
since p and e are relatively prime, we can find positive integers u and v such that
1 = u · p + (−v) · e. If we set τ := au

ωv , then τe = λ−uω and τp = λ−va. It
follows that S[ω, τ ] = S[τ ] = R, since either p is a unit and a is square-free or p
is not a unit and (τ, p)S[τ ] = τS[τ ]. Thus, {1, τ, . . . , τe−1} generate R as an S[ω]-
module. Since u and e are relatively prime, the set {uj}1≤j≤e−1, when reduced
mod e, equals the set {i}1≤i≤e−1. This will enable us to replace the generators
{1, τ, . . . , τe−1} by {1, λa

ωs1 , . . . ,
λae−1

ωse−1 }. To elaborate, given 1 ≤ i ≤ e − 1, there is
a unique 1 ≤ ji ≤ e−1 such that uji ≡ i (mod e). Write uji = tie+ i, ti ≥ 0. Then

(1 + ve)ji = puji = tiep+ ip,

so (vji)e + ji = (tip)e + ip. If we write ip = sie + r, with 0 ≤ r < e, then
uniqueness of the euclidean algorithm gives vji = tip + si and r = ji. Thus,
τ ji = auji

ωvji
= ai

λti ωsi
and ip = sie+ ji. For i = e−1, this yields se−1 < p. Moreover,

p = (si+1−si)e+(ji+1−ji), so si+1−si > 0. Similarly, ep = (se−i+si)e+(je−i+ji),
so se−i + si ≤ p. Thus, s1, . . . , se−1 have the required numerical properties.

We now have {1, τ, . . . , τe−1} = {1, a
λt1 ωs1 , . . . ,

ae−1

λte−1ωse−1 }. Multiplying by

appropriate powers of λ allows us to use {1, λa
ωs1 , . . . ,

λae−1

ωse−1 } as a generating set
for R over S[ω]. In Proposition 2.1 take A := S[ω], B := S[W ], F := F (W ) and J̃
the ideal of (e − 1)× (e − 1) signed minors of the e× (e− 1) matrix

φ =



−a 0 · · · 0 0
Wαe−1 −a · · · 0 0

0 Wαe−2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Wα2 −a
0 0 · · · 0 Wα1





2606 D. KATZ

with α1 + α2 + · · ·+ αi = si, for 1 ≤ i ≤ e− 1. To obtain φ′, we augment φ by the
column whose transpose is (W p−c, 0, . . . , 0, (−1)eλa) (so det(φ′) = F (W )). Then
J−1 is generated as an S[ω]-module by {1, λa

ωs1 , . . . ,
λae−1

ωse−1 }. Thus, R = S[ω, τ ] =
J−1 for J = (ωse−1 , ωse−2a, . . . , ae−1), as desired.

For a proof of the next lemma, see [Ka], Lemma 4.1.

Lemma 3.4. In S[W ] consider the ideals H := (W ek ,W ek−1a1, . . . ,W
e1ak−1, ak)

and K := (W ft ,W ft−1b1, . . . ,W
f1bt−1, bt), where

(i) ek > ek−1 > · · · > e1 and ft > ft−1 > · · · > f1.
(ii) a1 | a2 | · · · | ak and b1 | b2 | · · · | bt.
(iii) Each ai and bj is a product of prime elements.
(iv) For all i and j, ai and bj have no prime factor in common.

Then there exist integers gs > · · · > g1 and products of primes c1 | c2 | · · · | cs such
that H ∩K = (W gs ,W gs−1c1, . . . ,W

g1cs−1, cs). Moreover, H, K and H ∩K are
all grade two perfect ideals.

Lemma 3.5. Let A be a domain and I ⊆ J ideals such that J−1 is a ring. Then
I−1 is a J−1-module if and only if I−1 = (I · J−1)−1. In particular, if x ∈ J and
x · J−1 ⊆ J , then (x · J−1)−1 is a J−1-module.

Proof. We first observe (I ·J−1)−1 is always a J−1-module. Indeed, y ∈ (I ·J−1)−1

implies I · J−1y ⊆ R. Thus J−1J−1y = J−1y ⊆ I−1, so (I · J−1)(J−1y) ⊆ R and
J−1y ⊆ (I ·J−1)−1. Therefore, (I ·J−1)−1 is a J−1-module and the first statement
follows easily from this. For the second statement, we note that if x ·J−1 ⊆ J , then
for I := x · J−1, I · J−1 = x · J−1J−1 = x · J−1 = I. Thus, I−1 = (I · J−1)−1, so
I−1 is a J−1-module by the first statement.

Remark 3.6. Proposition 2.2 in [Ko] states that R is a free S-module, if S is an
unramified regular local ring and p | f . The proof shows that R is a free S-module
just under the assumption that f can be written as a product of primes and S/pS is
a domain. In [Ko], Proposition 1.5, it is shown that if S is a UFD, then there exists
a free S-module F ⊆ R such that pR is contained in F . Thus, if p is a unit in S,
then R is also a free S-module. Finally, if f is square-free, R is a free S-module by
Lemma 3.2. We record these facts in a common setting in the following proposition.
For a version of the proposition for pnth root extensions, see [Ka], Theorem 4.2.

Proposition 3.7. In addition to our standing hypotheses, assume that S is a UFD.
Then R is a free S-module in each of the following cases:

(i) p is a unit in S.
(ii) p is not a unit and either p | f or f is square-free.

We are now ready for our theorem.

Theorem 3.8. Assume that S is a regular local ring. Then there exists a finite,
birational R-module M satisfying depthS(M) = dim(R). In other words, M is a
maximal Cohen-Macaulay module for R.

Proof. By Proposition 3.7, R is a free S-module, and therefore Cohen-Macaulay,
unless we assume that p is not a unit in S, p - f and f is not square-free. In
particular, we may assume that f is not a unit in S. Factor f as a unit λ times prime
elements ai, say f = λae1

1 · · · aer
r . We may assume that for 1 ≤ t ≤ r, 1 < ei < p,

if 1 ≤ i ≤ t and ei = 1, if t < i ≤ r. Set Qi := (ω, ai)S[ω] for 1 ≤ i ≤ t. For
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each 1 ≤ i ≤ t choose s(i, 1) < · · · < s(i, ei − 1) satisfying the conclusion of Lemma
3.3 over S[ω]Qi and set Ji := (ωs(i,ei−1), ωs(i,ei−2)ai, . . . , ω

s(i,1)aei−2
i , aei−1

i )S[ω].
Thus, RQi = (J−1

i )Qi for all i. We now have two cases to consider. Suppose first
that f is not a pth power modulo p2S. We will show that R is Cohen-Macaulay.
By our discussion in section two, Q1, . . . , Qt are exactly the height one primes
Q ⊆ S[ω] for which S[ω]Q is not a DVR, so by Proposition 2.1 and Lemma 3.3,
R = J−1 for J := J1 ∩ · · · ∩ Jt. Set B := S[W ](W,N) (for N , the maximal ideal of
S) and use “tilde” to denote pre-images in B. By Lemma 3.4, J̃ ⊆ B is a grade two
perfect ideal. Therefore, p.d.B(J) = p.d.B(J−1) = 1, by Proposition 2.1(iii). Thus,
depthB(J−1) = dim(B)− 1, so depthS(R) = dim(R), which is what we want.

Suppose that f is a pth power modulo p2S. Write f = hp + p2g, for h, g ∈ S,
p - h. Then P = (ω − h, p). Moreover, P and Q1, . . . , Qt are the height one
primes Q ⊆ S[ω] for which S[ω]Q is not a DVR. By Proposition 2.1 and Lemma
3.2, R = J−1, for J := J1 ∩ · · · ∩ Jt ∩ P . Now, as in the proof of Lemma 3.3,

J−1
i is generated as an S[ω]-module by the set {1, λiai

ωs(i,1) , . . . ,
λia

ei−1
i

ωs(i,ei−1) }, where,
for each i, λi :=

∏r
i6=j=1 λa

ej

j . Thus Ki = (ωp−s(i,1), ωp−s(i,2)ai, . . . , a
ei−1
i )S[ω],

for Ki := aei−1
i · J−1

i and 1 ≤ i ≤ t. By Lemma 3.3, Ki ⊆ Ji, so upon setting
I := K1 ∩ · · · ∩Kt ∩P , it follows from Lemma 3.5 that I−1 is a J−1-module (since
this holds locally for every height one prime in S[ω]). Taking M := I−1, we will
show that M is the required module. For this, we claim that Ĩ ⊆ B is a grade two
perfect ideal. If the claim holds, 1 = p.d.B(I) = p.d.B(I−1) = p.d.B(M). Thus
depthB(M) = dim(B)− 1, so depthS(M) = dim(R), which is what we want.

To prove the claim, we set K̃ := K̃1 ∩ · · · ∩ K̃t and consider the short exact
sequence

0 −−−−→ B/Ĩ −−−−→ B/K̃ ⊕B/P̃ −−−−→ B/(K̃ + P̃ ) −−−−→ 0.

Since K̃ is a grade two perfect ideal (by Lemma 3.4), the Depth Lemma and the
Auslander-Buchsbaum formula imply that Ĩ is a grade two perfect ideal, once we
show depth(B/(K̃+P̃ )) = dim(B)−3. Set a := ae1−1

1 · · · aet−1
t . We now argue that

K̃+ P̃ = (a, p,W−h). If we can show this, clearly depth(B/(K̃+ P̃ )) = dim(B)−3
and we will have verified the claim. Take k̃ ∈ K̃ and consider its image k in
K ⊆ S[ω]. Select Q ⊆ S[ω], a height one prime. If Q = Qi, for some 1 ≤ i ≤ t,
then k ∈ (aei−1

i J−1
i )Qi = aRQi . If Q 6= Qi for any 1 ≤ i ≤ t, then clearly

k ∈ aRQ = RQ. It follows that k ∈ aR ∩ S[ω]. In other words, k is integral over
the principal ideal aS[ω]. Therefore, the image of k in S[ω]/(ω − h, p) = S/pS
is integral over the principal ideal generated by the image of a. Since S/pS is
integrally closed, the image of k in S/pS is a multiple of the image of a. Therefore,
k̃ ∈ (a, p,W − h) in S[W ]. It follows that K̃ ⊆ (a, p,W − h). Since a ∈ K̃, we
obtain K̃ + P̃ = (a, p,W − h), which is what we want. This completes the proof of
Theorem 3.8.

Remark 3.9. Of course if S is an unramified regular local ring, S fulfills our standing
hypotheses, so Theorem 3.8 applies. However, the theorem also applies to certain
ramified regular local rings. For instance, take T to be the ring Z[X1, . . . , Xd]
localized at (p,X1, . . . , Xd) and let H ∈ Z[X1, . . . , Xd] be any polynomial in
(X1, . . . , Xd)2 for which Zp[X1, . . . , Xd]/(H) is an integrally closed domain. If
we set S := T/(p − H), then S is a ramified regular local ring and S/pS is an
integrally closed domain.
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We close with an example where R is not a free S-module, yet R admits a finite,
birational module which is a free S-module. The example is an unramified variation
of Koh’s Example (2.4).

Example 3.10. Let S be an unramified regular local ring having mixed character-
istic 3 and take x, y ∈ S such that 3, x, y form part of a regular system of parame-
ters. Set a := xy4 + 9, b := x4y + 9 and f := ab2, so ω3 = f = ab2 = h3 + 9g, for
h = x3y2. From Lemmas 3.2 and 3.3 it follows that R = (Q ∩ P )−1 for Q := (ω, b)
and P := (ω − h, 3). Set J := Q ∩ P . We first show that R = J−1 is not a free
S-module. Suppose to the contrary that J−1 is free over S. As in the proof of
Theorem 3.8, set B := S[W ](N,W ) and use “tilde” to denote pre-images in B. Since
J−1 is free over S, we have p.d.B(J−1) = 1, so J−1 is a grade one perfect B-module.
By [KU, Proposition 3.6], J is a grade one perfect B-module, so J̃ is a grade two
perfect ideal. On the other hand, depthB(B/J̃) = 1 + depthB(B/(Q̃ + P̃ )). But,
Q̃+ P̃ = (W,x4y, x3y2, 3)B, so B/(Q̃+ P̃ ) = S/(3, x4y, x3y2)S, which is easily seen
to have depth equal to depth(S)− 3 = depth(B)− 4. This is a contradiction, so it
must hold that R is not a free S-module.

Now, Q−1 is generated as an S[ω]-module by {1, ab
ω }. If we set K := b · Q−1,

then K = (ω2, b)S[ω]. The proof of Theorem 3.8 shows that M := (K ∩ P )−1

is a finite, birational R-module satisfying depthS(M) = dim(R). In other words,
M is an R-module which is free over S. To calculate a basis for M , one must
calculate K ∩ P and then use Proposition 2.1. We leave it to the reader to check
that K ∩ P = (ω2 − h2 − 9x2y3, b(ω − h), 3b). Therefore, K ∩ P = I2(φ) for

φ =

 −b 0
ω + h −3
−3x2y3 ω − h

 .

The augmented matrix that determines (K ∩ P )−1 = M is the 3× 3 matrix −b 0 ω
ω + h −3 x2y3

−3x2y3 ω − h t

 ,

where t is defined by the equation x5y5 = ab + 3t. By Proposition 2.1, M is
generated as an S[ω]-module by the set {1, γ, δ}, for

γ :=
−3t− x2y3(ω − h)
ω2 − h2 − 9x2y3

=
ω

b
, δ :=

−bt+ 3x2y3ω

b(ω − h)
=
ω2 + ωh+ h2 + 9x2y3

3b
.

If we show that {1, γ, δ} also generateM as an S-module, then since they are clearly
linearly independent over S, they form a basis for M as an S-module. To see that
{1, γ, δ} generate M as an S-module, it suffices to show that ω, ω · γ and ω · δ can
be expressed as S-linear combinations of {1, γ, δ}. This clearly holds for ω. Using
9x2y3 = bx2y3 − x6y4, we obtain

ω · γ =
ω2

b
= −x2y3 · 1− h · γ + 3 · δ.

Since ω3 = h3 + 9g and g = x5y5 + bxy4 + b2, we get

ω · δ = (3xy4 + 3b) · 1 + 3x2y3 · γ + h · δ,
and the example is complete.
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