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ABSTRACT. Let S be an unramified regular local ring having mixed charac-
teristic p > 0 and R the integral closure of S in a pth root extension of its
quotient field. We show that R admits a finite, birational module M such that
depth(M) = dim(R). In other words, R admits a maximal Cohen-Macaulay
module.

1. INTRODUCTION

Let R be a Noetherian local ring. In considering the local homological conjec-
tures over R, one may reduce to the situation where R is a finite extension of an
unramified regular local ring S. Therefore, it is a natural point of departure to
assume that R is the integral closure of S in a “well-behaved” algebraic extension
of its quotient field. Certainly, when S has mixed characteristic p > 0, one ought to
consider the case that R is the integral closure of S in an extension of its quotient
field obtained by adjoining the pth root of an element of S. This was done in [Ko]
where it was shown that S is a direct summand of R, i.e., the Direct Summand
Conjecture holds for the extension S C R. In this note we show that a number of
the other local homological conjectures hold for such R by showing that R admits
a finite, birational module M satisfying depth(M) = dim(R) (see [H]). In other
words, R admits a maximal Cohen-Macaulay module. Such a module is necessarily
free over S. Aside from regularity, one of the crucial points in the mixed character-
istic case seems to be that S/pS is integrally closed. By contrast, using an example
from [HM], Roberts has noted that even if S is a Cohen-Macaulay UFD and R is
the integral closure of S in a quadratic extension of quotient fields, R needn’t admit
a finite, S-free module at all (see [R]). For the example in question, S has mixed
characteristic 2, yet S/2S is not integrally closed.

2. PRELIMINARIES

In this section we will establish our notation and present a few preliminary
observations. Throughout, S will be a Noetherian normal domain with quotient
field L. We assume char(L) = 0. Fix p € Z to be a prime integer and suppose
that either p is a unit in S or that pS is a (proper) prime ideal and S/pS is
integrally closed. Let f € S be an element that is not a pth power and select W
an indeterminate. Write F(W) := WP — f € S[W], a monic irreducible polynomial
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and let R denote the integral closure of S in K := L(w), for w a root of F(W).
Thus R is the integral closure of S[w].

Our strategy in this paper is to exploit the fact that R can be realized as J !
for a suitable ideal J C S[w]. The study of birational algebras of the form J~!
seems to have captured the attention of a number of researchers during the last
few years, albeit in notably different contexts (see [EU], [Ka], [KU], [MP] and [V]).
Since J~! inherits Sy from S[w], this means that in attempting to “construct” R,
if the candidate is J ! for some .J, then only the condition R; must be checked.

The following proposition summarizes some of the conditions relating R to J~!
for suitable J that we will call upon in the next section. Parts (i) and (ii) of
the proposition were inspired by the main results in [V] and Proposition 3.1 in
[KU]. Special cases of part (iii) of the proposition have apparently been known to
algebraic geometers for a long while. For some historical comments and fascinating
variations, the interested reader should consult [KU].

Proposition 2.1. Let A be a Noetherian domain satisfying So and assume that
A’, the integral closure of A, is a finite A-module.

(i) Suppose {Py,...,P,} are the height one primes of A for which Ap, is not a
DVR. If for each 1 <i < n, rad(J;) = P; and (J; ")p, = Al then A" = J71,
for J:=J1N---Ndy,.

(i) If A# A', then A’ = J=1, for some height one unmized ideal J C A. More-
over, if A is Gorenstein in codimension one, then A" = J~! for a unique
height one unmized ideal J satisfying J - J~ ' = J = (J~1)7L.

(iil) Suppose that A = B/(F) for F € B a principal prime and J C B is a grade
two ideal arising as the ideal of n x n minors of an (n + 1) X n matriz ¢.
Assume further that F' € J and set J := j/(F) Let Ay, ..., Apy1 denote
the signed minors of ¢, write F := by A1 + -+ byr1Any1 and let ¢’ denote
the (n+1) x (n+1) matriz obtained by augmenting the column of bl;s to ¢ (so
F is the determinant of ¢'). Then J~! can be generated as an A-module by
{1.1/01, ..., Ynt1n+1/0n+1 = 1}, where ¥, ; denotes the image in A of the
(i,1)th cofactor of ¢' and 0; denotes the image of A; in A (which we assume
to be non-zero). Moreover, p.d.p(J) = p.d.g(J~ 1) = 1.

Proof. To prove (i), note that Jo = A'Q for all height one primes Q C A. Since J !
and A’ are birational and satisfy Ss, we obtain J~! = A’. For the first statement
in (ii), we may, by part (i), consider the case where A is a one-dimensional local
ring which is not a DVR. Let @ denote the maximal ideal of A. Then QQ~' C Q.
Since it always holds that Q@ C QQ ™!, we have Q = QQ~!. Therefore Q! is a
finite ring extension properly containing A (since for any ideal J, (JJ 1)~ is a
ring). If Q7! = A’, we're done. If not, then since Q! inherits Sy from A, Q!
contains a height one prime P for which (Q71)p is not a DVR. Thus P! is a
finite ring extension properly containing Q~'. An easy calculation shows that P~!,
considered over Q7 !, equals (QP)~!, considered over A. Iterating this process
shows we eventually obtain A’ = J~!, for some J C A. Now suppose that A is
Gorenstein in codimension one. Then Ig = ((I71)71)g, for all ideals I C A and all
height one primes Q C A. Therefore, I = (I=1)~!, for all height one, unmixed ideals
I C A. In particular, this holds for J. Moreover, if J=! = A’ = K~1, for K height
one and unmixed, then J = K. Finally, since J~!is aring, (J-J71).-J~t = J.-J71
soJ-J7LC(J Y=t =J. Thus, J-J~! = J, as desired. For (iii), the description of
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the generators for J—1 follows either from [MP], Proposition 3.14 or [KU], Lemma
2.5. For the second part of (iii), see [KU], Proposition 3.1. |

Returning to our basic set-up, we note that since S is a normal domain, S{w]
satisfies Serre’s condition Sy. Moreover, since char(S) = 0, R is a finite S-module.
Thus Proposition 2.1 applies. In Section 3 we will identify the ideal J C S[w] for
which J~! = R. In the meantime, we observe that if p is not a unit in S, then there
is a unique height one prime in Sfw] containing p. Suppose p | f. Then P := (w,p)
is clearly the unique height one prime in Sfw] containing p. Moreover, S[w|p is a
DVR if and only if p? 1 f. Suppose p{ f. If f is not a pth power modulo pS, then f
is not a pth power over the quotient field of S/pS (since S/pS is integrally closed)
and it follows that F'(WW) is irreducible mod pS. Thus (p, F(W)) is the unique
height two prime in S[W] containing F(W) and p, so pS[w] is the unique height
one prime in S[w] containing p. If f = A mod pS, then F(W) = (W — h)? mod pS
and it follows that (w — h, p)S[w] is the unique height one prime in S[w] containing
p. Thus, in all cases, there exists a unique height one prime in S[w] lying over pS.
For the remainder of the paper, we call this prime P. Suppose f = hP + gp, so
P = (w— h,p)S[w]. Write P := (W — h,p)S[W] for the preimage of P in S[W].
Then

F(W)=WP —hP —gp= (WP~  4... 4 h?~1) . (W — h) — gp.
In S[W], wr—1 +-t h?=1 = ph?~! modulo (W — h), so WP~ 4 ...+ hp~1 € P.
Thus, F(W) € P? if and only if p | g. In other words, in all cases, Pp is not
principal if and only if f = h? + p?g, for some h,g € S.
3. THE MAIN RESULT

In this section we will present our main result, Theorem 3.8. Lemmas 3.2 and
3.3 will enable us to describe the ideal J C S[w] for which R = J~!. We will then
see in the proof of Theorem 3.8 that the module we seek has the form 11, for some
ideal I C J.

Lemma 3.1. Suppose p is not a unit in S, h € S\pS and p =2k + 1. Set
k
€= >y () vy - e,
j=1

C':=C-(p(W —h))"" and P := (p, W —h) - S[W]. Then C' & P.

Proof. Note that since p divides (?) for all 1 < j <k, C' is a well-defined element
of S[W]. Now, C" ¢ P if and only if the residue class of ' modulo W — h, as an
element of S, does not belong to pS if and only if Z?Zl(—l)j“ (’;) %jl(p —2j), as
an element of S, is not divisible by p. Since

k
S (7)o
i=1 J

is divisible by p and hP?~! is not divisible by p, it is enough to show that

()

j=1
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is not divisible by p, as an element of S. However,
k . k
1 (P2 1 (p—1 k1 2k
S (N2 -2 e (0 ]) = com ()
o i) p = j—1 k
Because p does not divide (2,5) in Z, p does not divide (Qkk) as an element of S (since
pS #S). Thus C' & P, as claimed. |

For the next lemma, we borrow the following terminology from [Kap]. We shall
say that f € S is “square-free” if ¢S, = fS, for all height one prime ideals ¢ C §
containing f. Since F'(w) - R C S[w] and w - F'(w) = p- f, it follows from the
discussion in Section 2 that if f is square-free, then either R = S[w] or P is the
only height one prime for which S[w]p is not a DVR.

Lemma 3.2. Suppose f € S is square-free and S[w] # R (thus p is not a unit in
S). Then R = P~1. Moreover, R is a free S-module.

Proof. We first consider the case p > 2. Since S[w] is not integrally closed, we have
f = h?+p?g, for some h not divisible by p and g # 0in S. Thus, P = (w—h, p)S[w].
It follows from the proof and statement of Proposition 2.1 that P~! is a ring and
that P~! is generated as an S[w]-module by {1,7}, for

LN~ peipiot_ 9P
T=—" WwPIpiTl = 2 8
P ; w—nh

Therefore P~1 = S[w,7]. If we show that S[w, 7| satisfies Ry, then Sw,7] = R,
since P! satisfies Sy (as an S[w]-module and as a ring). Since f is square-free, it
suffices to show that Pp 1'is a DVR for each height one Q C P! containing p. To
do this, we find an equation satisfied by 7 over S[w]. On the one hand,
(w=h)-7=0-(w—h)+g-p.
On the other hand,
por=w=h"(w—h)+c p,
where ¢’ denotes the image in S[w] of the element C’ € S[W] defined in Lemma
3.1. Therefore, by the standard determinant argument, 7 satisfies
T):=T? T — g(w— h)P2
over Slw]. Now, let 7 : S[W,T] — S|w, 7] denote the canonical map and set
H := ker(rw) and let Q C Sfw, 7] be any height one prime containing p. Then
Q corresponds to a height three prime Q' C S[W,T] containing p and H. Since
PCQand HCQ',W —hand T? — C'T — g(W — h)P~2 belong to Q’. Therefore,
Q' =(p,W—-hT)orQ =(p,W —h,T—C"). Suppose Q' = (p, W — h,T). Then
Q= (p,w— h,7)S[w, 7]. We have
=T —glw—h)P?=0 and p(r—c)=(w—h)P"
By Lemma 3.1, ¢ ¢ Q, so 7 — ¢ ¢ @, and it follows that Qg = (w — h)g. Now
suppose Q' = (p, W — h,T — C"). Then Q = (p,w — h,7 — ¢)S|w, 7]. Since
=T —glw—h)P?=0 and (w—h)-T=g-p,
it follows that Qg = (p)g (since 7 € @, by Lemma 3.1). Thus, in either case, Qg
is principal, so R = S[w, 7] = P71,
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The proof is similar if p = 2 and f = h? + 4g, with 2 4 h. One notes that
P! = Slw, 7] = S[r], for 7 := 252 and that 7 satisfies {(T) := T — hT — g. To
show R = S[7], one uses the fact that [(T) and I'(T) are relatively prime over the
quotient field of S/285.

To see that R is a free S-module, we first note that R is clearly generated as an
S-module by the set {1,w,... ,wP™ ! 7 7w,... ,7wP~1}. However, 7w = pg-1+h-T.
This implies that 7w’ belongs to the S-module generated by {1,w, ... ,wP~!, 7}, for
all 1 <4 < p—1. Moreover, since

WPl =—pP Ll —pP 2w — e —heWP 24 pT

we may dispose of wP~! as well. Thus, R is generated as an S-module by the set
{1,w,... ,wP=2 7}. Since these elements are clearly linearly independent over S,
R is a free S-module. O

Lemma 3.3. Suppose f = a®, with a € S a prime element, A a unit in S and
2 <e<p. Ifpis not a unit in S, assume a = p. Then there exist integers
1 <51 <89 <+ < 8.1 < p satisfying

(i) se—i<p—si,1<i<e—1.

(i) R=J7! for J:= (w1, w2a,... ,wa®" 2 a*"1)S[w].

Proof. We begin by noting that either condition in the hypothesis implies that
Q := (w,a)S[w] is the only height one prime for which S[w]g is not a DVR. Now,
since p and e are relatively prime, we can find positive integers v and v such that

1l=wu-p+ (—v)- e If weset T := Z—Z, then 7¢ = A %w and 77 = A7%a. It
follows that S[w, 7] = S[r] = R, since either p is a unit and «a is square-free or p
is not a unit and (7,p)S[r] = 7S[r]. Thus, {1,7,...,7¢"!} generate R as an S[w]-

module. Since u and e are relatively prime, the set {uj}i<;j<c—1, when reduced
mod e, equals the set {i}1<i<e— 1 This will enable us to replace the generators
{17, by {1,222 ,wse 1} To elaborate, given 1 < i < e — 1, there is
a unique 1 < j; < e— 1 such that uj; = (mod e). Write uj; = t;e+1, t; > 0. Then

(1 +ve)ji = puj; = tiep + ip,
o (vj;)e + ji = (tip)e + ip. If we write ip = s;e + r, with 0 < r < e, then

uniqueness of thc euclidean algorithm gives vj; = t;p + s; and r = j;. Thus,

u_77

i = S = Atw - and ip = s;e+ j;. For i = e—1, this yields s,_; < p. Moreover,
p= (si+1— i)e+ (Jit1—1Ji), 80 Si41—58; > 0. Sumlarly, ep = (Se—it+si)e+(Je—it7i),
S0 Se_i + 8; < p. Thus, s1,...,S._1 have the required numerical properties.

We now have {1,7,...,7¢71} = {1, )\tl‘zﬂ,... s yetosr - Multiplying by

appropriate powers of A allows us to use {17 Um Yoo 7wsc—,1} as a generating set
for R over S[w]. In Proposition 2.1 take A := S[w], B := S[W], F := F(W) and J
the ideal of (e — 1) x (e — 1) signed minors of the e x (e — 1) matrix

—a 0 . 0 0
Weer  —a ... 0 0
0 We=2 ... 0 0
6= :
0 0 -
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with ag + s+ +a; = s;, for 1 <i < e— 1. To obtain ¢, we augment ¢ by the
column whose transpose is (W?7¢,0,...,0,(—1)%Aa) (so det(¢') = F(W)). Then
J~1 is generated as an S[w]-module by {1, 2% ... ,3—@f—j} Thus, R = S[w,7] =
J=t for J = (w1, w¥2a,...,a°" ), as desired. O

For a proof of the next lemma, see [Kal], Lemma 4.1.

Lemma 3.4. In S[W] consider the ideals H := (We , We-1ay,... , Wea,_1,a;)
and K = (W't Wh=1by, ... Wb, _1,b;), where

(i) ex >ep—1>--->e1 and fr > fr1 > > f1.

(i) a1 |ag |-+ |ag and by | by | --- | bs.

(ili) Each a; and b; is a product of prime elements.

(iv) For alli and j, a; and b; have no prime factor in common.
Then there exist integers gs > -+ > g1 and products of primes ¢y | ca | --+ | ¢s such
that HN K = (W9 W9 -1¢q,... ,W9cs_1,c5). Moreover, H, K and HN K are
all grade two perfect ideals.

Lemma 3.5. Let A be a domain and I C J ideals such that J=' is a ring. Then
I71 is a Jt-module if and only if I=* = (I - J=Y)~L. In particular, if x € J and
xz-J VY CJ, then (x - J~1)71 is a J~-module.

Proof. We first observe (I-J~1)~! is always a J~!-module. Indeed, y € ({-J~1)~!
implies I - J~'y C R. Thus J-'J ly=J 1y C It so (I -J 1) (J ty) C Rand
J7ly C(I-J71)~L. Therefore, (I-J71)7!isa J~'-module and the first statement
follows easily from this. For the second statement, we note that if z-J~! C J, then
for l'=a-J Y 1-Jt'=2-J ' =g.-J =1 Thus, "' =(I-J1)7} so
I~'is a J~!-module by the first statement. O

Remark 3.6. Proposition 2.2 in [Ko| states that R is a free S-module, if S is an
unramified regular local ring and p | f. The proof shows that R is a free S-module
just under the assumption that f can be written as a product of primes and S/pS is
a domain. In [Ko|, Proposition 1.5, it is shown that if S is a UFD, then there exists
a free S-module ' C R such that pR is contained in F'. Thus, if p is a unit in S,
then R is also a free S-module. Finally, if f is square-free, R is a free S-module by
Lemma 3.2. We record these facts in a common setting in the following proposition.
For a version of the proposition for p™th root extensions, see [Ka], Theorem 4.2.

Proposition 3.7. In addition to our standing hypotheses, assume that S is a UFD.
Then R is a free S-module in each of the following cases:

(i) p is a unit in S.

(ii) p is not a unit and either p | f or f is square-free.

We are now ready for our theorem.

Theorem 3.8. Assume that S is a regular local ring. Then there exists a finite,
birational R-module M satisfying depths(M) = dim(R). In other words, M is a
mazimal Cohen-Macaulay module for R.

Proof. By Proposition 3.7, R is a free S-module, and therefore Cohen-Macaulay,
unless we assume that p is not a unit in S, p ¥ f and f is not square-free. In
particular, we may assume that f is not a unit in S. Factor f as a unit \ times prime
elements a;, say f = Aaf'---a%. We may assume that for 1 <t <r, 1 <e; < p,
ifl<i<tande =1,ift <i<r. Set@; := (w,a;)Sw] for 1 < ¢ < ¢. For
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each 1 <4 <t choose s(i,1) < --- < s(i,e; — 1) satisfying the conclusion of Lemma
3.3 over S[w]g, and set J; 1= (w3(hei—1) s(hei=2g, st gsm2 geimh Gy
Thus, Rg, = (J; ')g, for all i. We now have two cases to consider. Suppose first
that f is not a pth power modulo p?S. We will show that R is Cohen-Macaulay.
By our discussion in section two, @Q1,...,Q: are exactly the height one primes
Q@ C S[w] for which S[w]g is not a DVR, so by Proposition 2.1 and Lemma 3.3,
R=J lforJ:=JiN---NJ;. Set B := S[Wlw,ny (for N, the maximal ideal of
S) and use “tilde” to denote pre-images in B. By Lemma 3.4, J C B is a grade two
perfect ideal. Therefore, p.d.5(J) = p.d.g(J~1) = 1, by Proposition 2.1(iii). Thus,
depthp(J~1) = dim(B) — 1, so depths(R) = dim(R), which is what we want.
Suppose that f is a pth power modulo p?S. Write f = h? + p?g, for h,g € S,
p 1 h. Then P = (w — h,p). Moreover, P and Q1,...,Q: are the height one
primes @ C S[w] for which S[w]g is not a DVR. By Proposition 2.1 and Lemma
32, R=J 1 for J:=JiNn---NJ,NP. Now, as in the proof of Lemma 3.3,

e;—1
-1 g Aia; Aia;”
J; " is generated as an S[w]-module by the set {1, Sy, ... vwsu,cqz—l)}’ where,

for each i, \; = H;éj:l /\ajj. Thus K; = (wP=*01 wP=s0:2)g, . a%1)S[w],
for K; = afi_l . Ji_1 and 1 < ¢ < t. By Lemma 3.3, K; C J;, so upon setting
I:=Kin---NK;NP, it follows from Lemma 3.5 that I~! is a J~!-module (since
this holds locally for every height one prime in Sw]). Taking M := I~!, we will
show that M is the required module. For this, we claim that I C B is a grade two
perfect ideal. If the claim holds, 1 = p.d.g(I) = p.d.g(I"') = p.d.g(M). Thus
depthp(M) = dim(B) — 1, so depths(M) = dim(R), which is what we want.

To prove the claim, we set K = f(l N---N f(t and consider the short exact
sequence

0 B/I B/K ® B/JP —— B/(K +P) —— 0.

Since K is a grade two perfect ideal (by Lemma 3.4), the Depth Lemma and the
Auslander-Buchsbaum formula imply that ITisa grade two perfect ideal, once we
show depth(B/(K +P)) = dim(B) —3. Set a := a{* " ---af* . We now argue that
K+P = (a,p, W —h). If we can show this, clearly depth(B/(K + P)) = dim(B)—3
and we will have verified the claim. Take k € K and consider its image k in
K C S[w]. Select Q C S[w], a height one prime. If Q = Q;, for some 1 < i < ¢,
then k € (af"'J Vg, = aRg,. If Q # Q; for any 1 < i < t, then clearly
k € aRg = Rg. It follows that £ € aR N S[w]. In other words, k is integral over
the principal ideal aS[w]. Therefore, the image of k in S[w]/(w — h,p) = S/pS
is integral over the principal ideal generated by the image of a. Since S/pS is
integrally closed, the image of k in S/pS is a multiple of the image of a. Therefore,
k € (a,p,W — h) in S[W]. It follows that K C (a,p,W — h). Since a € K, we
obtain K + P = (a,p, W — h), which is what we want. This completes the proof of
Theorem 3.8. O

Remark 3.9. Of course if S is an unramified regular local ring, .S fulfills our standing
hypotheses, so Theorem 3.8 applies. However, the theorem also applies to certain
ramified regular local rings. For instance, take T to be the ring Z[Xy,... , X4
localized at (p, Xi,...,X4) and let H € Z[X;,...,X,] be any polynomial in
(X1,...,X4)? for which Z,[Xy,...,X4]/(H) is an integrally closed domain. If
we set S := T/(p — H), then S is a ramified regular local ring and S/pS is an
integrally closed domain.
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We close with an example where R is not a free S-module, yet R admits a finite,
birational module which is a free S-module. The example is an unramified variation
of Koh’s Example (2.4).

Example 3.10. Let S be an unramified regular local ring having mixed character-
istic 3 and take x,y € S such that 3, z,y form part of a regular system of parame-
ters. Set a :=a2y* +9, b := 2y + 9 and f := ab?, so w? = f = ab® = h3 + 9g, for
h = x3y?. From Lemmas 3.2 and 3.3 it follows that R = (Q N P)~! for Q := (w,b)
and P := (w — h,3). Set J := QN P. We first show that R = J~! is not a free
S-module. Suppose to the contrary that J~! is free over S. As in the proof of
Theorem 3.8, set B := S[W](y,w) and use “tilde” to denote pre-images in B. Since
J~1is free over S, we have p.d.g(J~!) = 1, s0o J~! is a grade one perfect B-module.
By [KU, Proposition 3.6], J is a grade one perfect B-module, so J is a grade two
perfect ideal. On the other hand, depthp(B/J) = 1+ depthp(B/(Q + P)). But,
Q+P = (W,z'y,2%y2,3)B, so B/(Q+ P) = S/(3, 2%y, 2*y?)S, which is easily seen
to have depth equal to depth(S) — 3 = depth(B) — 4. This is a contradiction, so it
must hold that R is not a free S-module.

Now, Q~! is generated as an S[w]-module by {1, %b} If we set K :=b-Q1,
then K = (w?b)S[w]. The proof of Theorem 3.8 shows that M := (K N P)~!
is a finite, birational R-module satisfying depthgs(M) = dim(R). In other words,
M is an R-module which is free over S. To calculate a basis for M, one must
calculate K N P and then use Proposition 2.1. We leave it to the reader to check
that K N P = (w? — h? — 92%y3,b(w — h), 3b). Therefore, K N P = I5(¢) for

-b 0
b= w+n -3
322> w—h
The augmented matrix that determines (K N P)~! = M is the 3 x 3 matrix
—b 0 w
w+h -3 223,
322y w—nh t

where t is defined by the equation x°y® = ab + 3t. By Proposition 2.1, M is
generated as an S[w]-module by the set {1,v,d}, for

=3t 2293 (w — h) w 5 —bt + 3223w B w? + wh + A% + 9223
VT TR R 922 b T T hw—h) 3b '
If we show that {1,~, d} also generate M as an S-module, then since they are clearly
linearly independent over S, they form a basis for M as an S-module. To see that
{1,~,0} generate M as an S-module, it suffices to show that w,w -~y and w - § can
be expressed as S-linear combinations of {1,v,d}. This clearly holds for w. Using

922y = ba?y® — 2%y*, we obtain

w2

w-’y:?:—xzyB-l—h-’y—i—&&

Since w3 = h? + 9g and g = 259 + bay? + b2, we get
w-6=Bxy* +3b)-1+32%°% v+ h -0,

and the example is complete.
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