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Abstract

Let R be a local ring, I ⊆ R an ideal, and M and N finite R-modules. In this paper we provide a number
of results concerning the degree of the polynomial giving the lengths of the modules Exti

R
(N/InN,M),

when such a polynomial exists. Included among these results are a characterization of when this degree
equals the Krull dimension of R, a characterization of when the degree of the polynomial associated to the
first non-vanishing Ext under consideration equals the grade of I on M , and calculation of the degree of
Hilbert polynomials associated to certain iterated expressions involving the extension functor.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we continue our investigation into the degrees of Hilbert polynomials associated
to derived functors, in this case focusing on the extension functor. Let (R,m, k) be a local ring
and M , N be finite R-modules. Let I ⊆ R be an ideal such that I + ann(M) + ann(N) is m-
primary. For a finite length R-module A, write λ(A) for the length of A. It is shown in [6] that

εi
I (n) := λ

(
Exti

(
N/InN,M

))
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has polynomial growth for n large. Moreover, a degree estimate for this polynomial is given in
terms of the dimension of the Matlis dual of cohomology modules derived from an injective res-
olution of M . Here we seek to give cases where this degree and the corresponding normalized
leading coefficient can be explicitly computed. One of our main results, Theorem 3.2, charac-
terizes when the degree of εi

I (n) equals d , the dimension of R. It turns out that if N is locally
free at primes of maximal dimension (e.g., N = R), this can only occur when i = d . This is a
satisfactory finding since the analogous polynomial associated to the torsion functor can only
achieve degree d when the Tor index is 0. Moreover, in the case N = R, we show that the nor-
malized leading coefficient of εd

I (n) is e(I,M), the multiplicity of I on M . In [5] Kirby gave
an early result concerning the behavior of ε

g
I (n), where g denotes the grade of I on M , noting

that the associated polynomial has degree less than or equal to g. We go further in Theorem 3.9,
where we not only give an explicit description of the lengths determining ε

g
I (n), but we also give

precise conditions for the degree to equal g. In Theorem 3.11 we exhibit several classes of ideals
where for i �= d , εi

I (n) has the expected maximal degree d − 1, in light of Theorem 3.2. Recall
that if R is Gorenstein, then for any m-primary ideal I , R/In and Extd(Extd(R/In,R),R) are
isomorphic and therefore give rise to the same Hilbert polynomials. In section four we give the
degree and leading coefficient of Hilbert polynomials derived from similar iterated extension
modules. In particular, we show that if I ⊆ R is an m-primary ideal in any local ring, then the
polynomials giving the lengths of R/In and Extd(Extd(R/In,R)R) have the same degree and
same normalized leading coefficient.

2. Preliminaries

Throughout we assume that R is a local Noetherian ring with maximal ideal m, residue
field k and Krull dimension d . We also assume throughout that d > 0, since in the case where
dim(R) = 0, the Hilbert polynomials under consideration are constants (often identically zero).
We will rely on standard facts from Hilbert–Samuel theory. Namely, that if U is a finitely gener-
ated R-module and I ⊆ R is an ideal such that λ(U/IU) < ∞, then the lengths of the modules
U/InU are finite and given by a polynomial P(n) with rational coefficients for n large. As is
well known, the degree of P(n) equals the dimension of U and the normalized leading coeffi-
cient of P(n), denoted e(I,U), is called the multiplicity of I on U . More generally, let {Hn}n�0
be any family of finite length modules with the property that there exists a rational polynomial
Q(n) such that λ(Hn) = Q(n) for n large. Then the normalized leading coefficient of Q(n) is
the positive integer

lim
n→∞

deg(Q(n))!
ndeg(Q(n))

· Q(n).

For a finitely generated R-module V and an ideal I ⊆ R, we write �V (I ) for the analytic
spread of I on V , i.e., the Krull dimension of the graded module

⊕
n�0 InV/mInV . It is well

known that �V (I ) = �R/ ann(V )(I ), the analytic spread of the image of the ideal in the ring
R/ ann(V ). A proof of this can be found in the proof of Proposition 3 in [6]. In particular,
�V (I ) � dim(V ).

For finitely generated R-modules M and N and an ideal I ⊆ R, the main result in [6] shows
that if ann(M) + ann(N) + I is m-primary, the lengths of Exti (N/InN,M) are given by a poly-
nomial in n, for n large. For the purposes of this paper, we make the following definition.



D. Katz, E. Theodorescu / Journal of Algebra 319 (2008) 2319–2336 2321
Definition 2.1.

(a) Let M and N be finitely generated modules over R and I ⊆ R an ideal. We shall say that M ,
N , and I satisfy the standard support condition if I + ann(M) + ann(N) is m-primary.

(b) If the support condition in (a) holds, we will write εi
I (n) for the polynomial giving the lengths

of Exti (N/InN,M) for n large.

We will also use the following notation.

Definition 2.2. Let j � 0 be an integer and M a finitely generated R-module having an associated
prime of dimension j . Let P1, . . . ,Pr be the prime ideals in Ass(M) of dimension j and J =
P1 ∩ · · · ∩ Pr . We define Mj to be the set of elements in M annihilated by some power of J , i.e.,
Mj := ΓJ (M). Note that for any 1 � i � r , (Mj )Pi

= ΓPi
(MPi

).

We will make use of the following facts about Ext modules and injective resolutions. These
facts will be used in the sequel with little or no further comment. First, suppose M is a finite
R-module and S is a Gorenstein local mapping onto R. If j := depth(S) − depth(M), then j is
the largest index for which ExtjS(M,S) �= 0 (see [1, 8.1.8 and 8.1.9]). Now, let E be a minimal
injective resolution of M . The j th Bass number μj := μj (m,M) of M with respect to m is
dimk(Extj (k,M)), so that μj is just the number of times the injective hull of k appears as a
summand of the j th injective module in E . It is well known that μj = 0, for j < depth(M) and
μj �= 0 for j = depth(M). Now suppose that N is a finitely generated R-module and I is an ideal
such that N , M and I satisfy our standard support condition. In [6, p. 84], it is shown that

Hom
(
N/InN,E

) = Hom
(
N/InN,Γm(E)

)
, (2.1)

where Γm(−) is the local cohomology functor. In particular, this means that Extj (N/InN,M)

is the j th cohomology of the complex Hom(N/InN,Γm(E)). In other words,

Extj
(
N/InN,M

) = Hj
(
Hom

(
N/InN,Γm(E)

))
. (2.2)

Finally, for a complex of R-modules C, we will denote the Matlis dual of C by C∨.
Before starting, we need a lemma which will help us to estimate or calculate the normalized

leading coefficient of εi
I (n). This lemma leads to an improved statement regarding the degree

estimate given in [6, Corollary 7]. Suppose that U,V,W are submodules of a common finitely
generated R-module with W ⊆ V . Let I ⊆ R be an ideal such that the modules Ln := (U +
InV )/InW have finite length for n large. Then, it follows from Lemma 2 in [6] that these lengths
are given by a polynomial in n for n large. We will use this fact in the lemma below.

Lemma 2.3. Suppose that U,V,W are submodules of a finitely generated R-module with
W ⊆ V . Let I ⊆ R be an ideal such that the modules Ln := (U + InV )/InW have finite length
for n large. Let P(n) denote the corresponding Hilbert polynomial, i.e., P(n) = λ(Ln), for n

large.

(i) If dim(U) � �V (I ) − 1, then the degree of P(n) equals dim(U) and the normalized leading
coefficient of P(n) is at least e(I,U).

(ii) If dim(U) � �V (I ), then the normalized leading coefficient of P(n) equals e(I,U).
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Proof. Consider the canonical short exact sequence where π is the sum map

0 → U ∩ InV

U ∩ InW
→ U + InW

InW
⊕ InV

InW

π−→ Ln → 0.

Note that all of the terms in this sequence have finite length, so it follows that for n large,

P(n) = λ
((

U + InW
)
/InW

) + λ
(
InV/InW

) − λ
((

U ∩ InV
)
/U ∩ InW

)
. (2.3)

The second and third terms in this equation are given by polynomials, since the graded modules⊕
n�0

InV/InW and
⊕
n�0

(
U ∩ InV

)
/U ∩ InW

are finitely generated over the Rees ring of R with respect to I . Moreover, the dimensions of
these modules are bounded by �V (I ). Thus the degrees of the polynomials giving the second and
third terms in Eq. (2.3) are bounded by �V (I ) − 1. Now, since

λ
(
InV/InW

) − λ
((

U ∩ InV
)
/U ∩ InW

)
� 0

the degree and normalized leading coefficient of P(n) are at least the degree and normalized
leading coefficient of the polynomial giving the lengths of (U + InW)/InW , provided this poly-
nomial has degree at least �V (I ) − 1. Write Q(n) for this latter polynomial. We claim that the
degree and normalized leading coefficient of the polynomial of Q(n) are dim(U) and e(I,U)

respectively. If we show this, then the conclusions of the lemma will follow.
Using Artin–Rees, write

(
U + InW

)
/InW ∼= U/

(
U ∩ InW

) = U/In−t
(
U ∩ I tW

)
,

for some t � 0 and all n � t . This shows that e(I,U) is defined, and that the claim is true if
dimU = 0. Assuming dimU > 0, write

λ
((

U + InW
)
/InW

) = λ
(
U/

(
U ∩ I tW

)) + λ
((

U ∩ I tW
)
/In−t

(
U ∩ I tW

))
.

Thus, the degree of Q(n) is the dimension of U ∩ I tW and the normalized leading coefficient of
Q(n) is e(I,U ∩ I tW), assuming dim(U ∩ I tW) > 0. But now, since the quotient U/U ∩ I tW

has finite length, the modules U and U ∩ I tW have the same support. Thus, dim(U ∩ I tW) =
dim(U) > 0. In particular, for a prime P ⊆ R, P is a prime of maximal dimension in the support
of U ∩ I tW if and only if P is a prime of maximal dimension in the support of U . If we now
apply the associativity formula, we get that the multiplicity of I on both U and U ∩ I tW is the
same:

e
(
I,U ∩ I tW

) =
∑

dimP=dim(U∩I tW)

λ
(
U ∩ I tW

)
P
e(I,R/P )

=
∑

dimP=dimU

λ(UP )e(I,R/P )

= e(I,U),

which completes the proof of the lemma. �
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Remark 2.4. Before continuing, wish to give an application of Lemma 2.3 by improving [6,
Corollary 7]. While an estimate for the degree of εi

I (n) was given in [6], there were no statements
regarding criteria for equality in that degree estimate nor were there any statements concerning
the normalized leading coefficient of εi

I (n). The following proposition, used throughout this
paper, remedies this.

Proposition 2.5. Let R be a local ring, I ⊆ R an ideal and let M and N be finitely generated
R-modules. Assume that our standard support condition holds. Let E be a minimal injective
resolution of M . Then

deg
(
εi
I (n)

)
� max

{
dim

(
Hi

(
Hom

(
N,Γm(E)

)∨))
, �N(I ) − 1

}
.

Furthermore,

(i) The inequality in the estimate above becomes an equality whenever the dimension of
Hi (Hom(N,Γm(E))∨) is greater than or equal to �N(I) − 1.

(ii) If dim(Hi (Hom(N,Γm(E))∨)) is greater than or equal to �N(I)−1, the normalized leading
coefficient of εi

I (n) is at least e(I,Hi (Hom(N,Γm(E))∨)).
(iii) If dim(Hi (Hom(N,Γm(E))∨)) is greater than or equal to �N(I), then the normalized lead-

ing coefficient of εi
I (n) equals e(I,Hi (Hom(N,Γm(E))∨)).

Proof. The displayed inequality has already been given in [6, Corollary 7]. For the remaining
parts of the proposition, we just need to translate between the notation in [6] and the notation
of the lemma. First note that Eq. (10) in [6] shows that the Matlis dual of Exti (N/InN,M) is
isomorphic to the ith homology of the complex C ⊗ R/In, where C := Hom(N,Γm(E))∨ is a
complex whose modules are finite direct sums of N . The proof of [6], Proposition 3(a) shows
that the homology of a complex of the form C ⊗ R/In can be written as

Hi

(
C ⊗ R/In

) = K + In−n0K̃

L + In−n0C
,

with L ⊆ K and C ⊆ K̃ . This quotient can be written as (U + In−n0V )/In−n0W , where U :=
K/L is the ith homology of C, V := (K̃ +L)/L is a subquotient of a direct sum of finitely many
copies of N and W := (C + L)/L (see [6, p. 81, lines 8 and 9]). We now have the form required
by Lemma 2.3; in other words, for n large, εi

I (n) gives the lengths of (U + In−n0V )/In−n0W .
Once we observe that �V (I ) � �N(I), the remaining statements in the proposition will follow
immediately from the lemma. However, �V (I ) = �R/ ann(V )(I ) and �N(I) = �R/ ann(N)(I ). Since
V is a subquotient of a finite direct sum of N , ann(N) ⊆ ann(V ), so �R/ ann(V )(I ) is less than or
equal to �R/ ann(N)(I ), which gives what we want. �
3. Degree and leading coefficient of εi

I (n)

In this section we present our results concerning the degree and leading coefficient of εi
I (n).

Because the estimate in Proposition 2.5 involves two terms, and equality holds in this estimate
when the first of these terms dominates, our best results, with I as general as possible, occur
when the degree in question equals d or d − 1. For completely different reasons we are able to
show deg(ε

g
(n)) � g, for g := gradeI (M), and give a criterion for equality.
I
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We begin with the case that the degree of εi
I (n) equals d . We isolate a crucial part of the

argument for this case in the following lemma.

Lemma 3.1. Let R be a complete local ring of dimension d , I ⊆ R an ideal and M , N finite
R-modules such that I,M,N satisfy our standard support condition. Let E denote a minimal
injective resolution of M . Then the following are equivalent:

(a) dim(Hi (Γm(E)∨ ⊗R N)) = d .
(b) i � d and dim(Exti−d(N,M)) = d .

Proof. By Cohen’s structure theorem, there exists a Gorenstein local ring (S,n) of dimension d

that maps onto R. Thus, by local duality and the permanence of local cohomology, we have

Hj
m(M)∨ = Hj

n(M)∨ = Extd−j
S (M,S),

for 0 � j � d .
Let P ⊆ R be any prime of dimension d and let Q ⊆ S be its pre-image in S. We first note that

since the modules in the complex Γm(E) are finite sums of the injective hull of k, the modules in
Γm(E)∨ are finitely generated free R-modules. Moreover, by construction, we have for all i � 0,
Hi (Γm(E)∨) = Extd−i

S (M,S) (where we take Extd−i
S (M,S) = 0, for i > d). Thus,

Hi

(
Γm(E)∨

)
P

= Extd−i
S (M,S)P = Extd−i

S (M,S)Q = 0,

for all 0 � i < d , since SQ is self-injective. Thus, the complex (Γm(E)∨)P is split exact in
degrees i for 0 � i < d . Thus, (Γm(E)∨ ⊗ N)P is split exact in degrees i, for 0 � i < d . On
the one hand, this immediately shows that Hi (Γm(E)∨ ⊗ N) has dimension less than d for all
0 � i < d . On the other hand, if we split off the terms up to degree d from (Γm(E)∨)P , then we
obtain a free resolution of HomS(M,S)P over RP . Note that this latter module is just MP

∨P ,
where MP

∨P denotes the Matlis dual of MP over RP . To see this, first observe HomS(M,S) =
HomR(M,HomS(R,S)), since S maps onto R; at the same time, HomS(R,S)Q = HomS(R,S)P
is the injective hull of RP , since SQ is Gorenstein. Putting these together yields HomS(M,S)P =
MP

∨P . Now, using exactness of Matlis duality, we have for i � d that

Hi

(
Γm(E)∨ ⊗ N

)
P

= Hi

((
Γm(E)∨

)
P

⊗ NP

) = TorRP

i−d

(
M

∨P

P ,NP

)
.

Since the Matlis dual over RP of the latter Tor module is Exti−d
RP

(NP ,MP ), we have that,

λ
((

Hi

(
Γm(E)∨ ⊗R N

))
P

) = λ
((

Exti−d
R (N,M)

)
P

)

for all primes P ⊆ R of dimension d . Thus for i � d , dim(Hi (Γm(E)∨ ⊗R N)) = d if and only
if dim(Exti−d(N,M)) = d . This completes the proof of the lemma. �
Theorem 3.2. Let R be a local ring, I ⊆ R an ideal and M , N finite R-modules such that
I,M,N satisfy our standard support condition. Then, the following are equivalent:

(a) deg(εi
I (n)) = d .

(b) i � d and dim(Exti−d(N,M)) = d .
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Moreover, if (a) and (b) hold, then

εi
I (n) = e(I,Exti−d(N,M))

d! nd + lower degree terms.

Proof. We first note that we are free to pass to the completion R̂ of R and assume that R is
complete.

Now, let E be a minimal injective resolution of M over R. It follows from Proposition 2.5 that

deg
(
εi
I (n)

)
� max

{
dim Hi

(
Hom

(
N,Γm(E)

)∨)
, �N(I ) − 1

}

which by Hom-tensor duality gives

deg
(
εi
I (n)

)
� max

{
dim Hi

(
Γm(E)∨ ⊗R N

)
, �N(I ) − 1

}
. (3.1)

It also follows from Proposition 2.5 that equality holds in this degree estimate if the first term on
the right is at least as large as the second. Thus, since �N(I) � d , deg(εi

I (n)) = d if and only if
dim(Hi (Γm(E)∨ ⊗R N)) = d . Thus, (a) and (b) are equivalent by Lemma 3.1.

Assume now that (a) and (b) are satisfied. Our standard support condition implies that
λ(Extj (N,M)/I Extj (N,M)) is finite, so e(I,Extj (N,M)) is defined for all j � 0. By Propo-
sition 2.5, the normalized leading coefficient of εi

I (n) is e(I,Hi (Γm(E)∨ ⊗ N)). Using the
associativity formula, we have the set of equalities

e
(
I,Hi

(
Γm(E)∨ ⊗R N

)) =
∑

dimP=d

λ
(
Hi

(
Γm

(
(E)∨

) ⊗R N
)
P

)
e(I,R/P )

=
∑

dimP=d

λ
(
Exti−d(N,M)P

)
e(I,R/P )

= e
(
I,Exti−d(N,M)

)
,

which completes the proof of the theorem. �
Example 3.3. Suppose that R has a prime P of dimension d such that RP is not Gorenstein.
Let M := R, N := R/P and I be any m-primary ideal. Then it follows that for all i � d ,
Exti−d(N,M)P �= 0, so Exti−d(N,M) has dimension d . Thus, by Theorem 3.2, deg(εi

I (n)) = d ,
for all i � d . On the other hand, Theorem 3.2 also shows that deg(εi

I (n)) < d , for all i < d .

We now collect some corollaries of both the proof and the statement of the theorem. Included
among these results are the case N is locally free at all primes of maximal dimension. Note that
this case occurs if N = R, N is a syzygy of a module that is free at primes of maximal dimension,
or if N is a module with a rank (i.e., NP is free of constant rank at each associated prime P of R).

Corollary 3.4. Let R be a local ring, I ⊆ R an ideal and M , N finite R-modules such that
I,M,N satisfy our standard support condition. Assume further that N is free of rank r > 0 at
all minimal primes of R of dimension d . Then, the following are equivalent:

(a) deg(εi
I (n)) = d .

(b) i = d and there exists P ∈ Spec(R) such that ann(M) + ann(N) ⊆ P and dim(R/P ) = d .
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Moreover, if (a) and (b) hold and ann(M) + I is m-primary, then

εd
I (n) = r · e(I,M)

d! nd + lower degree terms.

Proof. The equivalence of (a) and (b) follows immediately from the theorem. For the second
statement, note that e(I,M) is defined, since ann(M) + I is m-primary. By Theorem 3.2, the
normalized leading coefficient of εd

I (n) is e(I,Hom(N,M)). The associativity formula and the
fact that NP is free of rank r at primes of maximal dimension yields

e
(
I,Hom(N,M)

) =
∑

dimP=d

λ
(
Hom(N,M)P

)
e(I,R/P )

=
∑

dimP=d

r · λ(MP )e(I,R/P )

= r · e(I,M). �
In the next two corollaries we take N = R. We consider this to be an important case, since

the local cohomology module Hi
I (M) is the direct limit of the modules Exti (R/In,M). We note

also that the degree statement in part (b) of Corollary 3.5 was already known when the ring R is
Cohen–Macaulay (see [5] or [6]).

Corollary 3.5. Suppose R is a local ring, M a finitely generated R-module, N = R and I an
ideal such that ann(M) + I is m-primary.

(a) If dim(M) < d , then for all i, deg(εi
I (n)) � d − 1.

(b) If I is an m-primary ideal and M = R, then

εd
I (n) = e(I )

d! nd + lower terms.

Proof. Immediate from Theorem 3.2. �
Corollary 3.6. Suppose R is a local ring, M a finitely generated R-module, N = R and I an ideal
such that ann(M) + I is m-primary. Write δ := dim(M). If �(I ) � δ, then deg(εi

I (n)) � δ − 1
for i �= δ and deg(εδ

I (n)) = δ. In the latter case, the normalized leading coefficient of εδ
I (n) is

e(I,M).

Proof. The proof follows exactly along the lines of the proof of Theorem 3.2, only, after com-
pleting, we take S to be a Gorenstein local ring of dimension δ mapping onto R/ ann(M). �

In the next proposition, we give a condition which guarantees that εd−1
I (n) has degree d − 1.

Proposition 3.7. Let R be a local ring and I ⊆ R an ideal. Assume that M and N are finite
R-modules such that I,M,N satisfy our standard support condition. Suppose there exists P in
AssR(M)∩ Supp(N) such that dim(R/P ) = d − 1. Then deg(εd−1

I (n)) = d − 1 and the normal-
ized leading coefficient of εd−1(n) is at least e(I,Hom(N,Md−1)).
I
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Proof. Using basic properties of completion, it is not hard to reduce to the case that R is com-
plete. As before, let S be a Gorenstein local ring of dimension d mapping onto R. Now, by
Proposition 2.5 and hom-tensor duality, the degree of εd−1

I (n) is bounded by

max
{
dim

(
Hd−1

(
Γm(E)∨ ⊗ N

))
, �N(I ) − 1

}
,

with equality holding when the maximum occurs with the first term. Since �N(I) is bounded
above by d , it follows that deg(εd−1

I (n)) = d − 1, whenever

dim
(
Hd−1

(
Γm(E)∨ ⊗ N

)) = d − 1. (3.2)

Note that by Proposition 2.5 and Lemma 3.1, the module Hd−1(Γm(E)∨ ⊗ N) has dimension
less than or equal to d − 1. On the other hand, local duality implies that

Hd−i

(
Γm

(
E
)∨) = Hd−i

m (M)∨ = ExtiS(M,S),

for 0 � i � d . Now, since P corresponds to a height one prime in S, Γm(E∨)P is split exact in
degrees less than d − 1. Using right exactness, it follows from this that

(
Hd−1

(
Γm(E)∨

) ⊗ N
)
P

= (
Hd−1

(
Γm(E)∨

))
P

⊗ NP = Ext1S(M,S)P ⊗R NP .

Since NP �= 0, if we show that Ext1S(M,S)P is non-zero, then Eq. (3.2) holds. But this follows
since S is Gorenstein. Indeed, if Q is the prime in S corresponding to P , then height(Q) = 1.
Thus

depth(SQ) − depth(MQ) = 1 − 0 = 1,

so Ext1S(M,S)Q = Ext1S(M,S)P does not vanish, which gives what we want. It now follows that
εd−1
I (n) has degree d − 1. Moreover, this same calculation shows that a prime Q of dimension

d − 1 belongs to the support of Hd−1(Γm(E)∨ ⊗R N) if and only if Q belongs to Ass(M) ∩
Supp(N).

For the statement involving multiplicity, note that by Proposition 2.5, the normalized leading
coefficient of εd−1

I (n) is at least e(I,Hd−1(Γm(E)∨ ⊗ N)). Let P in Ass(M) ∩ Supp(N) have
dimension d − 1 and let Q ⊆ S be the corresponding prime. Since SQ maps onto RP , A∨Q =
A∨P , for any RP -module A. Thus,

Ext1S(M,S)P = Ext1S(M,S)Q = H0
Q(MQ)

∨Q = H0
P (MP )

∨P = (Md−1)
∨P

P .

Finally, note that it follows from the calculation below that Hom(N,Md−1) �= 0 and moreover,
it follows easily from our standard support condition that m is the only prime ideal containing
I + ann(Hom(N,M)). Thus, I + ann(Hom(N,Md−1)) is m-primary, so e(I,Hom(N,Md−1))

is defined. Therefore, along similar lines as in the proof of Theorem 3.2, we have

e
(
I,Hd−1

(
Γm(E)∨ ⊗R N

)) =
∑

dimP=d−1

λ
(
Hd−1

(
Γm(E)∨

)
P

⊗ NP

)
e(I,R/P )

=
∑

λ
(
Ext1S(M,S)P ⊗ NP

)
e(I,R/P )
dimP=d−1
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=
∑

dimP=d−1

λ
(
(Md−1)

∨P

P ⊗ NP

)
e(I,R/P )

=
∑

dimP=d−1

λ
(
Hom(N,Md−1)P

)
e(I,R/P )

= e
(
I,Hom(N,Md−1)

)
.

Thus, the normalized leading coefficient is at least e(I,Hom(N,Md−1)), which is what we
want. �
Corollary 3.8. Let I ⊆ R be an ideal and M be a finitely generated R-module such that
ann(M)+I is m-primary. Assume that M has an associated prime P of dimension d −1 and take
N = R. Then, deg(εd−1(n)) = d −1 and its normalized leading coefficient is at least e(I,Md−1).
In particular, if M = R and I is an m-primary ideal, then εd−1

I (n) has degree d − 1 and its nor-
malized leading coefficient is at least e(I,Rd−1).

We now consider the Hilbert function of Extg(R/In,M), where M is a module such that the
grade of I on M is g. As is well known, these modules are the first non-vanishing extension
modules of the form Exti (R/In,M). In [5, Theorem 2.4], Kirby showed that the lengths of
the modules Extg(R/In,M) are ultimately given by a polynomial of degree less than or equal
to g. Kirby’s proof used his version of Hilbert theory for Artinian modules. In the following
theorem, we first give an explicit expression for the lengths of Extg(R/In,M), from which it
immediately follows that ε

g
I (n) has degree less than or equal to g. We then determine a necessary

and sufficient condition for equality to hold and, in case equality holds, determine the normalized
leading coefficient of ε

g
I (n).

Theorem 3.9. Let M be a finitely generated R-module and I ⊆ R be an ideal such that I +
ann(M) is m-primary. Assume N = R and let δ := dim(M). Set g := gradeI (M) and let S be a
Gorenstein local ring of dimension δ mapping onto R̂/ ann(M̂). Then:

(i) For all large n, ε
g
I (n) = λ(Extδ−g

S (M̂, S)/In Extδ−g
S (M̂, S)).

(ii) The degree of εg
I (n) is at most g and its normalized leading coefficient is e(I,Extδ−g

S (M̂, S)).
(iii) The degree of ε

g
I (n) equals g if and only if there exists a prime ideal P in Ass(M) such that

dim(R/P ) = g.
(iv) If the conditions in (iii) hold, the normalized leading coefficient of ε

g
I (n) is e(I,Mg).

Proof. Once again, we may complete. Note that since ann(M) + I is m-primary, g :=
gradeI (M) = depth(M). Consider E , the minimal injective resolution of M . Then,

Extg
(
R/In,M

) = Hg
(
Hom

(
R/In,E

)) = Hg
(
Hom

(
R/In,Γm(E)

))
,

the latter equality following from our support condition. Taking Matlis duals, we have

Extg
(
R/In,M

)∨ = Hg
(
Hom

(
R/In,Γm(E)

))∨

= Hg

(
Γm(E)∨ ⊗ R/In

)
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= Hg

((· · · → Rμg+1(m,M) → Rμg(m,M) → 0
) ⊗ R/In

)
= Hg

m(M)∨ ⊗ R/In

= Hg
n(M)∨ ⊗ R/In

= ExtdimS−g
S (M,S) ⊗ R/In.

Note, the equalities follow since I + ann(M) is m-primary, by exactness of Matlis dual together
with adjointness, since μg−1(m,M) = 0, by right exactness of ⊗, permanence of local coho-
mology, and local duality. Thus ε

g
I (n) has the required form, so (i) holds. It also follows that

deg(ε
g
I (n)) = dim(Extδ−g

S (M,S)) and that the normalized leading coefficient of ε
g
I (n) equals

e(IS,Extδ−g
S (M,S)). In particular, the second part of (ii) holds.

For the first part of (ii) regarding the degree of ε
g
I (n), i.e., dim(Extδ−g

S (M,S)), we are free to
work with primes in S. If Q is a prime of S of dimension greater than g (and hence height less
than δ − g), then Extδ−g

S (M,S)Q = 0, since SQ has injective dimension less than δ − g. This

shows that Extδ−g
S (M,S) has dimension less than or equal to g, and thus gives deg(ε

g
I (n)) � g,

so the first statement in (ii) holds.
Concerning the possibility of equality holding, let Q ⊆ S be a prime ideal with dimension g.

Then height(Q) = δ−g, so depth(SQ) = δ−g. Thus, since S is Gorenstein, Extδ−g
S (M,S)Q �= 0

if and only if depth(MQ) = 0, i.e., if and only if Q ∈ Ass(M). Thus, deg(ε
g
I (n)) = g if and only

if there exists a prime Q of dimension g belonging to Ass(M), so (iii) holds.
Finally, for part (iv), suppose deg(ε

g
I (n)) = g. To calculate the normalized leading coefficient

of ε
g
I (n), we proceed as before via the associativity formula to get

ε
(
I,Extδ−g(M,S)

) =
∑

dim(R/P )=g

λ
(
Extδ−g(M,S)P

)
e(I,R/P )

=
∑

dim(R/P )=g

λ
(
H 0

P (M)P
)
e(I,R/P )

=
∑

dim(R/P )=g

λ
(
(Mg)P

)
e(I,R/P )

= e(I,Mg),

and the proof is complete. �
Corollary 3.10. Assume that N = R and ann(M) + I is m-primary. If M is Cohen–Macaulay
and dim(M) = δ, then deg(εδ(n)) = δ and the normalized leading coefficient of εδ(n) is e(I,M).

Proof. Since M is Cohen–Macaulay, δ = depth(M), so it follows immediately from the pre-
vious theorem that deg(εδ(n)) = δ. Moreover, since M is Cohen–Macaulay, M is unmixed, so
Mδ = M . Thus, e(I,M) is the normalized leading coefficient of εδ

I (n). �
In our next result, we use Matlis duality to give a version for εi

I (n) of Theorems 3.3 and 3.4
from [4]. Note that J denotes the integral closure of an ideal J .
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Theorem 3.11. Assume that R is analytically irreducible. Let I be an ideal having analytic
spread d , let M be a finite R-module such that ann(M) + I is m-primary, and take N = R.
Assume further that one of the following conditions hold.

(i) I = mK for some ideal K ⊆ R.
(ii) (mIn : m) = In, large n.

(iii) (In : m) �⊆ In for some n and R is quasi-unmixed.

Then, for gradeI (M) < i � i.d.(M), i �= d , deg(εi
I (n)) = d − 1.

Proof. We may complete and assume R = R̂. Also note that by our support hypothesis,
gradeI (M) = depth(M), so that Exti (R/In,M) = 0, for i < depth(M).

Now assume depth(M) �= i �= d . Consider a minimal injective resolution of M

0 → M → Q0
δ0−→ Q1

δ1−→ · · · δi−2−−→ Qi−1
δi−1−−→ Qi

δi−→ Qi+1 → ·· · . (3.3)

By dimension shifting, it follows that Exti (R/In,M) = Ext1(R/In,C), where C is the (i − 1)st
cosyzygy of M . Let L := H0

m(C) be the largest Artinian submodule of C. Then L �= 0, since
i � depth(M) (and since by [3, Theorem 1.1], once a prime gives rise to a non-zero Bass number
at some stage in the minimal injective resolution of M , it has non-zero Bass number at all further
non-zero stages in the resolution). We have the exact sequence

0 → Hom
(
R/In,L

) → Hom
(
R/In,C

) → Hom
(
R/In,C/L

)
→ Ext1

(
R/In,L

) → Ext1
(
R/In,C

)
.

Now, by Proposition 2.5 and Corollary 3.4 above, the degree of εi
I (n), which is the degree of

the polynomial giving the lengths of Ext1(R/In,C), is less than or equal to d − 1. We now note
that our support hypothesis implies that Hom(R/In,C/L) = 0. Indeed, suppose c ∈ C is such
that In · c ⊆ L. For any x ∈ ann(M), Mx = 0, so by minimality of (3.3), Cx = 0. Thus, there
exists a q > 0 such that (ann(M))q · c = 0. Since I + ann(M) is m-primary, it follows that for
p sufficiently large, mp · c ⊆ L, from which it follows that c ∈ L. Thus, Hom(R/In,C/L) = 0,
as claimed. It follows that if we show that the degree of the polynomial giving the lengths of
Ext1(R/In,L) is d − 1, then deg(εi

I (n)) = d − 1, which is what we want. But the lengths of
the Ext1(R/In,L) are the same as the lengths of their Matlis duals which are Tor1(R/In,L∨),
where L∨ is a finitely generated R-module. Since R is a domain, L∨ clearly has a rank. The
result now follows from Theorems 3.3 and 3.4 in [4]. �
Remark 3.12. The main point about Theorem 3.11 is the following. By Corollary 3.4, we know
that for i in the indicated range, deg(εi

I (n)) � d − 1. The conditions (i)–(iii) stated in Theo-
rem 3.11 guarantee that deg(εi

I (n)) does not drop below d − 1.

4. Iterated applications

In this section we consider functions giving lengths of iterated expressions of the form
Extj (Exti (N/InN,M),M ′), for finitely generated R-modules N , M , and M ′ and I ⊆ R an
ideal such that I,M,N satisfy our standard support condition. Note that when R is Gorenstein
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and M ′ = M = N = R, then one has that R/In is isomorphic to Extd(Extd(R/In,R),R), so the
two length functions are actually the same. Using the results from [6], it is not hard to show that,
in the presence of our usual support condition, the lengths of Extj (Exti (N/InN,M),M ′) are
given by a polynomial in n, for n large. Our work below will characterize when this polynomial
has degree d and show that its normalized leading coefficient can be expressed in terms of the
multiplicity of the ideal on an iterated Ext module derived from N , M and M ′. In particular,
we obtain as a corollary that for any local ring R and any m-primary ideal I ⊆ R, the degree
and normalized leading coefficients for the Hilbert polynomials giving the lengths λ(R/In) and
λ(Extd(Extd(R/In,R),R)) remain the same.

Remark 4.1. We start with a lemma that is similar in spirit to Lemma 2.3. We set some notation
for the lemma. Suppose, just as in Lemma 2.3, I ⊆ R is an ideal and U,V,W are submodules of
a common finitely generated R-module so that W ⊆ V . For n > 0, set Ln := (U + InV )/InW .
Let C be a co-chain complex of finitely generated free R-modules and assume that the lengths
of the cohomology modules Hj (Ln ⊗ C) are finite for j > 0. Then by [6, Proposition 3(b)] the
lengths of these cohomology modules in are given by a rational polynomial for n large. We write
Qj(n) for this polynomial.

Lemma 4.2. Let (R,m) be a local ring of dimension d and I ⊆ R an ideal. Let Ln,C,and Qj(n)

be as in Remark 4.1. The following statements are equivalent:

(a) deg(Qj (n)) = d .
(b) Hj (C ⊗ U) has dimension d .

Proof. We start by tensoring the short exact sequence

0 → InV

InW
→ Ln → U + InV

InV
→ 0,

with C to get the long exact sequence

· · · → Hj

(
InV

InW
⊗ C

)
→ Hj (Ln ⊗ C)

→ Hj

(
U + InV

InV
⊗ C

)
→ Hj+1

(
InV

InW
⊗ C

)
→ ·· ·

(cf. [6, Proposition 3]).
We claim that in order to determine the coefficient of degree d of Qj(n), and in par-

ticular, to determine if that coefficient is non-zero, we only need to consider the same for
Hj ({(U + InV )/InV }⊗ C). Indeed, the degree of the Hilbert polynomial which gives the length
of Hj ((InV/InW) ⊗ C) is less than d , for all j since

⊕
n�0

Hj
((

InV/InW
) ⊗ C

) = Hj

(⊕
n�0

(
InV/InW

) ⊗ C
)

is a finite graded module over the Rees ring of I .
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In order to determine when the length of Hj (((U + InV )/InV ) ⊗ C) is eventually given by a
polynomial of degree d (and to determine its leading coefficient) we will ultimately appeal to [6,
Proposition 3(c)]. More precisely, we claim that in order to see that the degree of the polynomial
in question is d , it is enough to check that Hj (C ⊗ U) has dimension d . Indeed, following the
spirit of Lemma 2.3, we have the isomorphisms

U + InV

InV
∼= U

U ∩ InV
∼= U

In−t (U ∩ I tV )
,

for t large enough and n � t . This leads to the short exact sequence

0 → U ∩ I tV

In−t (U ∩ I tV )
→ U

In−t (U ∩ I tV )
→ U

U ∩ I tV
→ 0.

Tensoring this sequence with C and using the resulting long exact sequence in homology, we see
that the polynomials giving the lengths of the modules

Hj
(
C ⊗ {(

U + InV
)
/InV

})
and Hj

(
C ⊗ {(

U ∩ I tV
)
/In−t

(
U ∩ I tV

)})

simultaneously have degree d , because U/(U ∩ I tV ) has length independent of n. Furthermore,
since UP = (U ∩ I tV )P for all primes P �= m, it follows that Hj (C ⊗ U) has dimension d if and
only if Hj (C ⊗ (U ∩ I tV )) has dimension d . But, the polynomial giving the lengths of

Hj
({(

U ∩ I tV
)
/In−t

(
U ∩ I tV

)} ⊗ C
)

has degree equal to d if and only if Hj (C⊗ (U ∩ I tV )) has dimension d , by [6, Proposition 3(c)].
Thus the polynomial Qj(n) has degree d if and only if Hj (C ⊗ U) has dimension d . �
Theorem 4.3. Let (R,m) be a local ring of dimension d and I ⊆ R an ideal. Let N , M , and M ′
be finitely generated R-modules such that I,N,M satisfy our standard support condition. Fix
i, j � 0.

(i) The function λ(Extj (Exti (N/InN,M),M ′)) is given by a rational polynomial Q(n), for n

large.
(ii) The following are equivalent:

(a) deg(Q(n)) = d .
(b) i, j � d and dim(Extj−d(Exti−d(N,M),M ′)) = d .

(iii) If (a) and (b) hold in (ii), then the normalized leading coefficient of Q(n) equals
e(I,Extj−d(Exti−d(N,M),M ′)).

Proof. We may assume that R is complete. As before, let S be a Gorenstein local ring of dimen-
sion d mapping onto R. Now, let E and E ′ respectively denote the minimal injective resolutions
of M and M ′. Set D := Γm(E ′)∨. Thus, just as in the proof of Lemma 3.1, for any prime P of
dimension d , DP is split exact in degrees less than d and if we truncate DP at the d th spot, we
get an RP -free resolution of HomS(M ′, S)P . Set C := Hom(D,R). Therefore,

C: · · · → Rμj−1(m,M ′) → Rμj (m,M ′) → Rμj+1(m,M ′) → ·· · .
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Now, we have

Extj
(
Exti

(
N/InN,M

)
,M ′) = Hj

(
Hom

(
Exti

(
N/InN,M

)
,E ′))

= Hj
(
Hom

(
Exti

(
N/InN,M

)
,Γm(E ′)

))
= Hj

(
Exti

(
N/InN,M

)∨ ⊗ C
)
.

As noted in Remark 2.2, it follows from [6] that, for some n0,

Exti
(
N/In+n0N,M

)∨ = U + InV

InW
for n � 0,

where U = Hi (Γm(E)∨ ⊗ N). By [6, Proposition 3(b)], the homology modules in the complex
C ⊗ {(U + InV )/InW } have polynomial growth. Thus, Q(n) exists, which gives (i).

To prove (ii), we proceed in three steps. For the first step, we show that if i < d , then
deg(Q(n)) < d . To see this, first note that by Theorem 3.2, the polynomial giving the lengths
of Exti (N/InN,M)∨ has degree less than d , if i < d . Since the homology modules in
Exti (N/InN,M)∨ ⊗ C are subquotients of finite sums of Exti (N/InN,M)∨, it follows that
deg(Q(n)) < d for i < d , which is what we want. We now assume i � d .

For our second step, we show that if j < d , then deg(Q(n)) < d . By Lemma 4.2, we must
show that Hj (C ⊗ U) has dimension less than d . Let P be a prime of dimension d . Using exact-
ness of the localization and the Matlis duality functor ∨P locally in codimension zero,

λ
(
Hj (C ⊗ U)P

) = λ
(
Hj (CP ⊗RP

UP )
) = λ

(
Hj (CP ⊗RP

UP )∨P
)
. (4.1)

Since C = Hom(D,R), Hom(C,L) = D ⊗ L, for any R-module L. Thus, using Hom-tensor du-
ality over RP , we have (CP ⊗RP

UP )∨P = DP ⊗RP
UP

∨P . Since DP is split exact in degrees less
than d , it follows that dim(Hj (C ⊗ U)) < d , for j < d . Thus, we now have that deg(Q(n)) < d ,
if j < d , which is what we want.

For our final step in the proof of (ii), we assume j � d , i � d and prove that deg(Q(n)) = d if
and only if dim(Extj−d(Exti−d(N,M),M ′)) = d . Using what we have just observed about the
relation between C and D, we may extend Eq. (4.1) to get for any P of dimension d

λ
(
Hj (C ⊗ U)P

) = λ
(
Hj

(
DP ⊗RP

UP
∨P

))
. (4.2)

Recall from the proof of Lemma 3.1 that UP
∨P = (Exti−d

R (N,M))P and

Hj

(
DP ⊗RP

UP
∨P

) = TorRP

j−d

((
M ′

P

)∨P ,UP
∨P

)
, for j � d.

Thus, extending Eq. (4.2), we have

λ
(
Hj (C ⊗ U)P

) = λ
(
TorRP

j−d

((
M ′

P

)∨P ,UP
∨P

))
(4.3)

= λ
(
Extj−d

RP

(
U

∨P

P ,M ′
P

))
(4.4)

= λ
(
Extj−d

RP

(
Exti−d

RP
(NP ,MP ),M ′

P

))
(4.5)

= λ
(
Extj−d(

Exti−d(N,M),M ′) )
. (4.6)
R R P
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Here we have used the invariance of length under Matlis duality as well as the duality between
Tor and Ext. We now have that a prime ideal of maximal dimension belongs to the support of
Hj (C ⊗ U) if and only if it belongs to the support of Extj−d(Exti−d(N,M),M ′). Therefore,
dim(Hj (C ⊗U)) = d if and only if dim(Extj−d(Exti−d(N,M),M ′)) = d . Thus, deg(Q(n)) = d

if and only if dim(Extj−d(Exti−d(N,M),M ′)) = d , which is what we wanted to show. Part (ii)
of the theorem now follows immediately by combining the three steps.

Finally for (iii), assume that deg(Q(n)) = d . From Lemma 4.2 and its proof we have
dim(Hj (C ⊗ U)) = dim(Hj (C ⊗ (U ∩ I tV ))) = d . In fact, as noted in the proof of Lemma 4.2,
Q((n)) and the polynomial giving the lengths of the modules

Hj
(
C ⊗ {(

U ∩ I tV
)
/In−t

(
U ∩ I tV

)})

differ by a polynomial of degree less than d . By [6, Proposition 3(c)],

Hj
(
C ⊗ {(

U ∩ I tV
)
/In−t

(
U ∩ I tV

)})

has the form (A + InB)/InC, with C ⊆ B and A = Hj (C ⊗ (U ∩ I tV )). Thus, by Lemma 2.3,
the normalized leading coefficient of Q(n) is e(I ;Hj (C ⊗ (U ∩ I tV ))). Using Eq. (4.6) above
in the associativity formula gives

e
(
I ;Hj

(
C ⊗ (

U ∩ I tV
))) =

∑
dimP=d

e(I ;R/P )λ
(
Hj

(
C ⊗ (

U ∩ I tV
))

P

)

=
∑

dimP=d

e(I ;R/P )λ
(
Hj (C ⊗ U)P

)

=
∑

dimP=d

e(I ;R/P )λ
(
Extj−d

R

(
Exti−d

R (N,M),M ′)
P

)

= e
(
I ;Extj−d

(
Exti−d(N,M),M ′)),

which completes the proof. �
Remark 4.4. Recall that a module C is said to be semi-dualizing if the natural map from R

to HomR(C,C) is an isomorphism and Exti (C,C) = 0, for all i > 0. For more information on
semi-dualizing modules, see [2], where examples are given of semi-dualizing modules that are
not dualizing modules (see, [2, p. 1874]).

The more general first part of the following corollary answers a question posed to the second
author by S. Sather-Wagstaff, while the second part of the following corollary generalizes what
is obvious in the case that R is Gorenstein. Both parts follow immediately from Theorem 4.3.

Corollary 4.5. Let (R,m, k) be a local ring of dimension d . Let C be a semi-dualizing module
and I ⊆ R an m-primary ideal. Then for all large n, we have

λ
(

Extd
(
Extd

(
R/In,C

)
,C

)) = e(I )

d! · nd + lower degree terms.

In particular, the Hilbert polynomials for R/In and Extd(Extd(R/In,R),R) have the same de-
gree and same normalized leading coefficient.
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We close this section by giving a version of Theorem 3.9 for an iterated Ext in degree g, where
g := gradeI (M). Denote E2(−) := E ◦ E, where the functor E := Extg(−,M). We will use the
following notation in the proposition below. Let S be a Gorenstein local ring of dimension δ

mapping onto R̂/ ann(M̂) and set C := Extδ−g
S (M̂, S), where δ := dim(M). Set T2(C) := C ⊗C.

Proposition 4.6. Let M be a finite R-module of dimension δ, depth g and let I be an ideal such
that I + annM is m-primary. Then with the notation introduced in the paragraph above,

(i) E2(R/In) ∼= Hom(C,E(R/In)∨) ∼= Hom(C,C/InC).
(ii) The polynomial Q2(n) which agrees with λ(E2(R/In)) for n large has degree dim(C) and

normalized leading coefficient e(I,Hom(C,C)).
(iii) deg(Q2(n)) � g and equality holds if and only if Ass(M) contains a prime of dimension g.
(iv) If Ass(M) contains a prime of dimension g, the normalized leading coefficient of Q2(n) is

e(I,Hom(Mg,Mg)).

Proof. Again, we may assume R is complete. To prove (i), we begin by noting that it follows
from the proof of Theorem 3.9 that E(R/In)∨ is isomorphic to C ⊗ R/In. Thus the second
expression in (i) for E2(R/In) follows immediately from the first. The first expression for
E2(R/In) follows along the lines of the proof of Theorem 3.9. Following the same argument
as in the proof of Theorem 3.9, with R/In replaced by E(R/In), we get that

E2(R/In
)∨ = Extδ−g

S (M,S) ⊗ E
(
R/In

) = C ⊗ E
(
R/In

)
,

which, by Matlis duality, gives (i).
For (ii), by direct computation from a finite presentation of C we get

Hom
(
C,C/InC

) = (
U + In−n0V

)
/In−n0W,

for some n0 and n � n0, where U := Hom(C,C) and W ⊆ V are two finite R-modules contained
in a direct sum of finitely many copies of C. Thus,

dim(V ) � dim(C) = dim(U)

and it follows from this that �V (I ) � dim(U). By Lemma 2.3, the degree of Q2(n) is dim(U) =
dim(C) and its normalized leading coefficient is

e(I,U) = e
(
I,Hom(C,C)

)
,

so (ii) holds.
For (iii) we note that in the proof of Theorem 3.9 it is shown that dim(C) � g and equality

holds if and only if M has an associated prime of dimension g. Thus (iii) follows from (ii).
Finally, to see (iv), suppose Ass(M) contains a prime of dimension g, i.e., dim(C) = g. As in

the proof of Theorem 3.9, for any prime P of dimension g, we have that CP = (Mg)P , so by the
associativity formula

e
(
I,Hom(C,C)

) = e
(
I,Hom(Mg,Mg)

)

and the proof is now complete. �
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