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UNIFORM SYMBOLIC TOPOLOGIES IN ABELIAN

EXTENSIONS

CRAIG HUNEKE AND DANIEL KATZ

Abstract. In this paper we prove that, under mild conditions, an equicharac-

teristic integrally closed domain which is a finite abelian extension of a regular
domain has the uniform symbolic topology property.

1. Introduction.

The purpose of this paper is to give a partial answer to the following question:

Question 1.1. Let R be a complete local Noetherian domain. Does there exist a
positive integer b such that for all prime ideals P ⊆ R, P (bn) ⊆ Pn, for all n ≥ 1 ?

In fact, our results do not in general need the assumption that the ring is local
or complete, but do require the rings to satisfy both the Uniform Artin-Rees and
the Uniform Briançon-Skoda properties.

Here we write P (t) to denote the tth symbolic power of the prime ideal P , namely
P (t) = P tRP ∩R. For any Noetherian domain R, when b as above exists, we shall
say that R satisfies the uniform symbolic topology property on prime ideals. Uniform
results of this type for regular rings were first given by Ein, Lazarsfeld and Smith in
[5], by Hochster and Huneke in [8], and recently by Ma and Schwede in mixed char-
acteristic [17]. In these papers, the authors prove that if R is a regular local ring
and d is the Krull dimension of R, then P ((d−1)n) ⊆ Pn, for all prime ideals P ⊆ R
and all n ≥ 1. In [15], uniform results were proved for isolated singularities, under
some mild conditions on the ring. However, in that paper no effective bound was
given. In general little is known: see the introduction to [15] for further discussion
about this problem. Because a complete local domain containing a field, or an affine
domain over a field, is a finite extension of a finite dimensional regular domain con-
taining a field, it is natural to consider how the uniform symbolic topology property
behaves with respect to finite ring extensions. Thus, Question 1.1 would have a
positive answer for such rings if whenever S ⊆ R is a finite extension of Noetherian
domains, R has the uniform symbolic topology property on prime ideals if S has
the uniform symbolic topology property on prime ideals. In [16] ascent and de-
scent theorems of this type were proved. Although descent of the uniform symbolic
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topology property holds, the results in [16] for ascent are not strong enough to give
a positive answer to Question 1.1.

The entire paper is devoted to a proof of the following main theorem: Suppose
that R is an integrally closed domain that is an abelian extension of an equichar-
acteristic excellent regular domain S satisfying our standard hypothesis (see the
next section), such that if S has characteristic p > 0, then S is F -finite and the
index of the corresponding Galois group is not divisible by p. Then R has the
uniform symbolic topology property on prime ideals.

Preliminary results and basic definitions are contained in Section 2.
There are many delicate points in the proof. Section 3 sets up a main technical

tool for the proof, which holds in great generality. Namely, we prove that for a
wide class of rings, the uniform symbolic topology property holds for all prime
ideals in R if there exist fixed integers a, b ≥ 1, with b a particular value chosen
a priori, such that P (a) ⊆ P b, for all prime ideals P . The number b depends
on a uniform Artin-Rees number for certain special elements which we call uniform
multipliers for symbolic powers. This already presents a difficulty in using reduction
to characteristic p, since it is not known how uniform Artin-Rees numbers behave
under such reduction.

Section 4 gives our main results in the case of a simple radical extension of an
excellent regular ring satisfying our standard hypothesis. The main new technical
tool is a fundamental result involving norms of elements in a simple radical ex-
tension. For a given element u in a finite extension ring of our base ring, and for
a given prime Q, our result compares which symbolic power of the prime Q the
element u is in to which symbolic power its norm is in for the contraction of Q to
the base ring. This section also presents the reduction to characteristic p argument
to prove certain elements are always uniform multipliers for symbolic powers.

Section 5 generalizes the simple radical extension case to the case of repeated
radical extensions. For this, after some preliminary results, we rely on induction
and the existence of a uniform multipler for symbolic powers in repeated radical
extensions. Our final Section 6 combines the previous work to prove the main
theorem. We use Kummer theory in the following way. Suppose that S ⊆ R is a
finite abelian extension of integrally closed Noetherian domains. In other words,
if L denotes the quotient field of S and K denotes the quotient field of R, then
the extension L ⊆ K is a Galois extension with abelian Galois group and R is the
integral closure of S in K. If the characteristic of L (say) does not divide order
of the Galois group and L contains an appropriate root of unity, then K is an
extension of the form L( n

√
a1, . . . , n

√
at). It is not hard to see that if S is regular

(or just a UFD), we may assume each ai is a square-free element S, that the ring
T := S[ n

√
a1, . . . , n

√
at] is integrally closed, and R ⊆ T . Thus, by the descent

theorem stated in the next section, it will be enough to show that T satisfies the
uniform symbolic topology property.

For a more detailed history of the problem at hand, we refer the reader to [15]
or [16] and for unexplained terminology, we refer the reader to the book [4]. The
paper [19] contains interesting related results concerning the linear equivalence of
topologies defined by valuation ideals.
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2. Preliminaries

In this brief section we record the results that we will rely upon throughout
the paper. Our work relies heavily on both the Uniform Artin-Rees Property and
the Uniform Briançon-Skoda Property. Because of this dependence, many of our
theorems need to assume we are in a position to use them. This leads to the
following definition:

Definition 2.1. Throughout this paper, we say that a reduced Noetherian ring S
satisfies our standard hypothesis if for every finite extension T of S and reduced
ideal J ⊆ T , T/J satisfies both the Uniform Artin-Rees Property and the Uniform
Briançon-Skoda Property.

For the reader’s convenience, we recall the definitions:

Definition 2.2. Let S be a Noetherian ring. We say that the Uniform Artin-Rees
Property holds for S if for every pair of finitely generated R-modules N ⊆M , there
exists an integer k (depending on N ⊆ M) such that for all ideals I of S, and for
all n ≥ k,

InM ∩N ⊆ In−kN.

Definition 2.3. Let S be a Noetherian reduced ring. We say that the Uniform
Briançon-Skoda Property holds if there exists a positive integer k such that for all
ideals I of S, and for all n ≥ k,

In ⊆ In−k.

Here we are writing J to denote the integral closure of an ideal J .

Let S be a reduced Noetherian ring. By [11, Theorems 4.12, 4.13], in each of the
following cases, S satisfies our standard hypothesis.

i) S is essentially of finite type over an excellent Noetherian local ring.
ii) S is a ring of characteristic p, and under the Frobenius map F : S → S, S

is a finite module over the image of the Frobenius. If S is reduced, this is
equivalent to saying that S1/p is module finite over S.

iii) S is essentially of finite type over Z .

Two main results of [16], which we use freely in this paper, are the ascent and
descent theorems mentioned in the introduction. Note that in [16], the ring S is
acceptable if it satisfies one of the three conditions above. In fact, the results below
hold when S satisfies our standard hypothesis, since in [16] we used the acceptable
hypothesis in order to invoke the Uniform Artin-Rees and the Uniform Briançon-
Skoda properties.

Theorem 2.4. (Ascent) Let S ⊂ R be a finite integral extension of Noetherian
domains. Assume that S is acceptable and integrally closed in its field of fractions
K and that the field of fractions L of R is a separable extension of K. If S has
the uniform symbolic topology property on prime ideals, then R has the uniform
symbolic topology property for all prime ideals Q ⊆ R such that Q is the only prime
lying over Q ∩ S. Moreover, if R is also integrally closed, the conclusion holds for
arbitrary L.
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Theorem 2.5. (Descent) Let S ⊂ R be a finite integral extension of Noetherian
domains. Assume that S is acceptable and integrally closed. There exists an integer
r, depending only on the extension S ⊂ R, such that if Q is a prime in R, q = S∩Q,
and Q(bn) ⊂ Qn, for some fixed b and for all n ≥ 1, then q(rbn) ⊂ qn for all n ≥ 1.
In particular, if R satisfies the uniform symbolic symbolic topology property, then
so does S.

As a consequence of the descent theorem, for example, if a finite group acts on
an acceptable regular ring of equicharacteristic zero having finite Krull dimension,
then the ring of invariants must have uniform symbolic topologies for prime ideals.

3. Uniform multipliers for symbolic powers and Bootstrapping

In this section we show that for a wide class of rings the uniform symbolic
topology property holds for all prime ideals in R, if there exist fixed integers a, b ≥ 1,
with b a particular value chosen a priori, such that P (a) ⊆ P b, for all prime ideals
P . Of course, on the face of it, this property (which is implied by the uniform
symbolic topology property), is much weaker. A key ingredient in this result is the
existence of certain elements that multiply large symbolic powers of an ideal into
powers of smaller symbolic powers. To this end, we make the following definition.

Definition 3.1. Let R be a Noetherian ring and U a set of ideals of R (for example,
all prime ideals or all reduced ideals). We say that a non-zerodivisor x ∈ R is a
uniform multiplier for symbolic powers with respect to U if there exists k ≥ 1 such
that for all ideals I ∈ U ,

xnI(kn+en) ⊆ (I(e+1))n,

for all e ≥ 0 and n ≥ 1. If U = Spec(R), we just say that x is a uniform multiplier
for symbolic powers. In either case, we refer to the integer k as the index of the
multiplier x.

Remark 3.2. It follows from [8], Theorem 1.1, that ifR is a finite-dimensional regu-
lar domain containing a field, then 1 ∈ R is a uniform multiplier for symbolic powers
for all ideals. The same theorem shows that if R is a geometrically reduced affine
domain over a field K (which in the case that R has characteristic zero, just means
that R is reduced), then any x in the square of the Jacobian ideal of R over K is a
uniform multiplier for symbolic powers for all ideals. In [15], Proposition 3.4, it is
shown that if R is is a Noetherian domain containing a field of characteristic p > 0
such that R is F -finite and an isolated singularity, then exists an m-primary ideal
consisting uniform multipliers for symbolic powers. In the lemma below, we point
out how the argument from [15], which is quite similar to the one in [8], yields
uniform multipliers for symbolic powers in more general settings. In particular, the
existence of a uniform multiplier for symbolic powers in a repeated radical exten-
sion of an equicharacteristic regular ring is one of our crucial results. In [14], we
prove the existence of these uniform multipliers for arbitrary hypersurfaces.

Lemma 3.3. Suppose R is a d-dimensional F -finite integral domain containing
a field of characteristic p > 0. Fix a ∈ R and assume there are flat R-modules
Fq ⊆ R1/q such that aR1/q ⊆ Fq, for all q. Then for every ideal I ⊆ R, if we
let h denote the maximum of the analytic spreads of the ideals IP , where P is an
associated prime of I, then anI(nh+en) is contained in the tight closure of (I(e+1))n,
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for all e ≥ 0 and n ≥ 1. Moreover, if a is also a test element for R, then a2 is a
uniform multiplier for symbolic powers for all ideals of R with index d.

Proof. With only very minor modifications, we can follow the proofs of Proposition
3.4 and Theorem 3.5 in [15] to show that a has the required property. Starting with
an ideal I ⊆ R, as in [15] Proposition 3.4, one uses the flatness of the Fq to show

that aq(I [q] : xq) ⊆ (I : x)[q], for all I ⊆ R, x ∈ R and q ≥ 1. Here we are just using
the fixed multiplier a rather than the full ideal J appearing in [15]. Note also that
in the proofs of the results from [15], the modules Fq are assumed to be free, but
the flatness of the modules Fq suffices, nor do we need R to be an integral domain.
Then, as in the proof of [15], Theorem 3.5, one uses Lemma 2.4(b) from [8] to show
that for u ∈ I(hn+en), and q = an+ r, with 0 ≤ r < n, there exists s ≥ 1 such that

Is+(h+e)(n−1)ua ⊆ (I(e+1))[q]RS ∩R.

Here, S denotes the complement of the union of the associated primes of I. Note
that in [15], this latter relation is applied with d, the dimension of R instead of
h, but Lemma 2.4(b) in [8] is actually stated with h. The rest of the proof now
proceeds exactly as in the proof of [15], Theorem 3.5, showing that anu is in the
tight closure of (I(e+1))n, as required. The second statement follows from the first
statement and the definition of test element. �

The conclusion of the next proposition is a special case of an interesting theorem
due to Swanson, namely [20], Theorem 3.1. However, because we only need a
special case, the result already follows from [11], Proposition 2.2 and its proof
under conditions much more general than Swanson’s result.

Proposition 3.4. Let R be a Noetherian ring and x ∈ R a non-zerodivisor. Sup-
pose the pair (x) ⊆ R has uniform Artin-Rees number l, i.e., for all ideals I ⊆ R,
and all n ≥ l, In ∩ (x) ⊆ In−l(x). Then for all ideals I ⊆ R, all n ≥ 1, and all
m ≥ nl, Im ∩ (xn) ⊆ Im−nl(xn).

Proof. Since the conclusion of the proposition holds for n = 1 by assumption, we
fix n ≥ 2. For 2 ≤ i ≤ n, (xi−1)/(xi) is isomorphic to R/(x), so the pair of modules
(xi+1) ⊆ (xi) has uniform Artin-Rees number l. Since

(xn) ⊆ (xn−1) ⊆ · · · ⊆ R

consists of n containments, it follows from the proof of [11], Proposition 2.2, that
the pair (xn) ⊆ R has uniform Artin-Rees number nl. In other words, for all ideals
I ⊆ R, all n ≥ 1 and all m ≥ nl, Im ∩ (xn) ⊆ Im−nl(xn), which is what we
want. �

Here is our bootstrapping theorem.

Theorem 3.5. Let R be a Noetherian ring. Let U be a set of ideals of R, and
suppose x ∈ R is a uniform symbolic multiplier with index k ≥ 1 for the set U .
Assume further that the pair (x) ⊆ R has uniform Artin-Rees number l ≥ 1. If
there exists b ≥ 1 such that I(b+1) ⊆ I l+1, for all ideals I ∈ U , then for d = k + b,
I(dn) ⊆ In, for all n ≥ 1 and all I ∈ U .

Proof. Let I ∈ U . From our assumption, taking e = b in Definition 3.1, we have

xnI(dn) = xnI(kn+bn) ⊆ (I(b+1))n ∩ (xn),
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for all n. Since I(b+1) ⊆ I l+1, it follows that

xnI(dn) ⊆ Inl+n ∩ (xn) ⊆ xnInl+n−ln = xnIn,

where the second containment follows from Proposition 3.4. Cancelling xn gives
I(dn) ⊆ In, for all I ∈ U and all n, as required. �

The following corollary is an immediate consequence of the theorem and remark
above.

Corollary 3.6. Let R be a Noetherian domain which is an affine domain over
a field of characteristic zero. Then there exists d ≥ 1 such that R satisfies the
uniform symbolic topology property if there exists c ≥ 1 such that Q(c) ⊆ Qd, for
all prime ideals Q.

4. Simple radical extensions

In this section we study the uniform symbolic topology property in the ring
R = S[ n

√
a], where S is an integrally closed Noetherain domain satisfying the

uniform symbolic topology property, n is a unit in S, and a ∈ S is square-free.
We say that an element a ∈ S is square-free if a is a unit or aS =

√
aS. Equiva-

lently, a ∈ S is square-free if a is a unit or QSQ = aSQ, for all height one primes
containing a. Note that if a ∈ S is a non-unit and square-free, then standard field
theory implies that Xn − a is irreducible over S, and moreover R is also integrally
closed. If a is a unit, then R is integrally closed and even regular, if S is regular,
since n · ( n

√
a)n−1 is a unit in R.

To see the potential pitfalls, even in this case of a simple radical extension,
consider the case n = 2. Thus, R = S[X]/(X2 − a). Let Q ⊆ R be a prime ideal
and set q = Q ∩ S. Assume a 6∈ q. If Q 6= qR, then the simplest case is when Q
has the form (x− b, q)R, where b ∈ S, x =

√
a is the residue class of X in R, and

b2 − a ∈ q. This occurs, for example, when S/q is integrally closed. Choose k such
that b2 − a ∈ q(k). In this case, we claim that for the prime Q := (x − b, q)R, we
have that x− b ∈ Q(k) but x− b /∈ Q2. To see this notice that in R,

(x− b)(x+ b) = a− b2 ∈ q(k) ⊂ Q(k),

but x+ b /∈ Q, since a 6∈ q. Thus, x− b ∈ Q(k) as claimed. On the other hand, it is
clear that x− b /∈ Q2. Thus, for this prime ideal Q, Q(k) 6⊆ Q2.

Now suppose that for infinitely many values of k there exists bk ∈ R and a

prime ideal qk in R such that b2k − a ∈ q
(k)
k and a 6∈ qk. Then for each such k,

Qk := (x − bk, qk)R is a prime ideal satisfying Q(k) 6⊆ Q2. It follows that R could
not have the uniform symbolic topology property. Why can’t this happen? When,
for example, (S,m) is a complete local domain, the reason is connected with the
strong Artin Approximation theorem. To see this, let bk and qk be as above with

b2k − a ∈ q
(k)
k . By [15], Theorem 2.3, there exists c ≥ 1 such that q(cn) ⊆ mn for all

prime ideals q ⊆ S and all n ≥ 1, since in a complete local domain, the q-symbolic
topology is finer than the m-adic topology (see also [2], Corollary 2.12). For k ≥ c,
write k = tkc+rk, where 0 ≤ rk < c. Then q

(k)
k ⊆ q(tkc)k ⊆ mtk . Thus, b2k−a ∈ mtk ,

for k ≥ c. Since tk → ∞ as k → ∞, one would have approximate solutions of
Y 2 − a = 0 modulo mtk for infinitely many k. The strong Artin Approximation
theorem then gives the existence of an actual solution approximating a given one to
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a high power of m. However, since a is assumed to be square-free, this is impossible.
For related results and interesting examples, see the paper of Rond [18].

The following theorem is crucial for our main results concerning radical exten-
sions and involves tracking norms of elements from R. Notice that the conclusion
of the theorem forces the prime ideal Q to be contained in the radical of (q, a)R -
which seems unlikely for an extension that is not a radical extension. Thus, it is
not clear how to extend this result directly to more general hypersurfaces.

Theorem 4.1. Let S be an integrally closed equicharacteristic Noetherian do-
main satisfying our standard hypothesis and assume that a is a square-free ele-
ment of S. Assume that S satisfies the uniform symbolic topology property. Let
R = S[X]/(Xn − a), and take Q ∈ Spec(R) such that a /∈ Q. Further assume that
if char(R) = p > 0, then p does not divide n. Set q = Q ∩ S. Then there is a
uniform N , not depending on Q, such that for all w ≥ 1, Q(Nw) ⊂ (aQ(w), qw)R.

Proof. If a is a unit, the result holds trivially by taking N = 1. Otherwise, let
u = b1x

n−1 + b2x
n−2 + . . .+ bn ∈ Q(t(n+1)) for large t determined below. The ring

R is a free S-module with basis the powers of x up to n− 1. Letting u act on R via
multiplication and writing the matrix of the action of u on the basis {1, x, . . . , xn−1}
yields the matrix M : 

bn b1a b2a · · · bn−1a
bn−1 bn b1a · · · bn−2a

...
...

. . .
. . .

...
b2 b3 · · · b1a
b1 b2 · · · · · · bn


Let D be the determinant of this matrix. Then D ∈ Q(t(n+1)) ∩ S ⊂ q(t) by

[7], Proposition 3.3. Fix m to be the maximum of the uniform Artin-Rees number
for the pair (a) ⊂ S and the uniform Briançon Skoda number for the reduced ring
B = S/(a). Note that B is reduced since a is square-free. In particular, for all
ideals I of S and e > m, Ie ∩ (a) ⊂ aIe−m and for every ideal J ⊂ B, the integral
closure of Je is contained in Je−m. Such a choice is possible since S satisfies the
uniform Artin-Rees theorem and B satisfies the uniform Briançon-Skoda theorem.

For each l ≥ 1, set Nl = nl+nl−1 + · · ·+n, and choose t = 2Nn+1mkw, where k
is chosen so that for all prime ideals P in S and for all r, P (rk) ⊂ P r. This number
is independent of P . We now show N = (n+ 1)2Nn+1mk is the N we seek. Thus,
if u ∈ Q(Nw), then

D ∈ q(2Nn+1mkw) ⊂ q2Nn+1mw.

We claim by induction on n − i, starting with i = 0, that bn−i ≡ acn−i modulo
q2Nn−imw, for some cn−i ∈ S.

Consider i = 0. The matrix M becomes upper triangular with bn along the
diagonal when we go modulo the ideal (a). We’ve seen thatD ∈ q2Nn+1mw. Working
in the reduced ring B it follows that bn is in the integral closure of q2mw(nn+...+1)B
which is contained in q2mw(nn+...+1)−mB by our choice of m. Since

q2mw(nn+...+1)−m ⊂ q2mwNn ,

we may then write bn ≡ acn modulo q2mwNn as claimed.
Assume that we have proved the claim up to i − 1, where i ≤ n − 1. Hence we

have that bn−j ≡ acn−j modulo q2Nn−i+1mw for 0 ≤ j ≤ i− 1.
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Let Mi be the matrix whose last n− i rows are the same as that of M , but whose
first i-rows are 

cn b1 b2 ... ... ... bn−1
cn−1 cn b1 ... ... ... bn−2

...
...

. . .
. . .

...
cn−i+1 cn−i+2 ... cn b1 ... bn−i


By multiplying each of the first i rows of Mi by a, one obtains a matrix that is
congruent to M modulo q2Nn−i+1mw. It follows that

D ≡ aidet(Mi) modulo q2Nn−i+1mw.

Hence,

aidet(Mi) ∈ q2Nn−i+1mw.

We may cancel one a at a time by using the fact that for large g, qg∩(a) ⊂ aqg−m
by our choice of m. Successively canceling the a, we obtain that

det(Mi) ∈ q2Nn−i+1mw−mi.

Now consider Mi modulo the ideal (a). Since modulo q2Nn−i+1mw, bn, . . . , bn−i+1

are divisible by a, over C := B/q2Nn−i+1mw−miB, Mi is congruent to the matrix

cn b1 b2 · · · bn−i 0 ... 0
cn−1 cn b1 · · · · · · bn−i · · · 0

...
...

. . .
. . .

. . .
...

cn−i+1 cn−i+2 · · · cn b1 · · · · · · bn−i
bn−i 0 · · · · · · · · · · · · · · · 0
bn−i+1 bn−i 0 · · · · · · · · · · · · 0

...
...

. . .
. . . · · · · · ·

...
b1 b2 · · · bn−i 0 · · · · · · 0


.

Thus, 0 = det(Mi)C = ±bnn−iC. Working in B, we have

bnn−i ∈ (q2(n
n−i+···+1)mw−m)nB.

(since i ≤ n). It follows that bn−i is in the integral closure of q2mw(nn−i+···+1)−mB,
which by our assumption on m, belongs to

q2mw(nn−i+...+1)−2mB ⊆ q2mwNn−iB.

We may then write bn−i ≡ acn−i modulo q2mwNn−i as claimed.
We have now shown that all bj are divisible by a modulo qw (in fact, modulo

q2nmw), for all w ≥ 1. It follows that u = av + r, where r ∈ qw ⊂ Qw. Then
av ∈ Q(w), and since a /∈ Q, it follows that v ∈ Q(w), finishing the proof. �

We next prove that for S regular and R := S[X]/(Xn − a), a2 is a uniform
multiplier for symbolic powers for R with index equal to the dimension of R. The
point is to prove the result first in characteristic p > 0, and then use reduction to
characteristic p when R contains a field of characteristic zero.



UNIFORM SYMBOLIC TOPOLOGIES IN ABELIAN EXTENSIONS 9

Proposition 4.2. Let S be an F -finite regular domain containing a field of charac-
teristic p > 0 and assume dim(S) = d. Let a ∈ S be square-free and suppose n ≥ 2
is not divisible by p. Then for R := S[ n

√
a], aR1/q ⊆ S1/q[R], for all q ≥ 1. In

particular, a2 is a uniform multiplier for symbolic powers for all ideals, with index
d.

Proof. We first note that since S is regular and R is free over S, each Fq :=

S1/q ⊗S R = S1/q[R] is flat over R, since each S1/q is finite and flat over S and
R is torsion-free over S. Note also that R inherits the F -finite property from S.
To prove the first statement in the proposition, note that S1/q[R] = S1/q[ n

√
a] and

R1/q = S1/q[ nq
√
a]. For fixed q ≥ 1 and any r ≥ 1, we can find positive integers

α, β ≥ 1 such that r + nq = αn+ βq. Thus, r
nq + 1 = α( 1

q ) + β( 1
n ). It follows that

a · (a
1
nq )r = (a

1
q )α · (a 1

n )β ∈ S1/q[R].

Since this holds for all r ≥ 1, this gives what we want. For the second statement,
if a is a non-unit, by Lemma 3.3, it suffices to observe that a is a test element for
R - but this follows from [9], Theorem 6.9. If a is a unit, a2 is a uniform symbolic
multiplier since R is regular. �

Proposition 4.3. Let S be an excellent regular domain containing a field and
suppose R is a finite extension of the form R = S[ n

√
a], where a is square-free.

Further assume that if S has characteristic p > 0, then S is F -finite and p does not
divide n. Then a2 is a uniform symbolic multipler with index d := dim(R) for the
set of radical ideals in R.

Proof. We may assume that a is not a unit. The case that S contains a field of
characteristic p follows from Proposition 4.2.

If S contains a field of characteristic zero, the proof of the result we seek proceeds
via reduction to characteristic p. The proof follows along the same lines as most
reduction to characteristic p proofs. In particular, we can follow the ideas in the
proofs of [8], Theorems 4.3 and 4.4, and also the proof of Theorem 4.7 and the
proof in the Appendix of [13]. To elaborate, the results in [8], show how, starting
with a complete local ring A, say, and a counter-example to an inclusion of the type
we want involving symbolic powers, one can produce a counter-example in a ring
of positive characteristic - the point being that conditions like elements belonging
to, or not belonging to, various symbolic powers, as well as the maximum of local
analytic spreads can be preserved via the reduction process. On the other hand, we
need a slight variation of this, because we will be working with two rings at once, S
and its simple extension R – but [13], Theorem 4.7 and the Appendix, illustrate how
to carry the ring strucure of R along in the reduction process. Another crucial point
here is that the failure of the required property of a proposed uniform multiplier for
symbolic powers can be preserved along the way, because the element a2 is given a
priori as an element of the original ring – in this case R.

We now sketch out the steps required in order to reduce our statement to positive
characteristic. Set x = n

√
a and assume that we have a reduced ideal I ⊆ R,

u ∈ I(hn+en) with a2nu 6∈ (I(e+1))n, for some e ≥ 0, n ≥ 1. By standard localization
arguments, our counter-example persists after we localize at some prime ideal in S,
so we may assume that we have a counter-example when S is a regular local ring.
We now lift the counterexample by completing S at its maximal ideal. Writing
Ŝ for the completion of S, we have R̂ = Ŝ ⊗S R, which is faithfully flat over R.
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Note also that since S is excellent, R̂ remains reduced, as do R̂/IR̂ = R̂/Î and

R̂/aR̂. Moreover, since R̂/IR̂ is faithfully flat over R/I, non-zerodivisors on the
latter remain non-zerodivisors on the former, so that if U ⊆ R denotes the set of
non-zerodivisors on R/I and W ⊆ R̂ denotes the set of non-zerodivisors on R̂/Î,

then U = W ∩ R and hence (R/Ik)U ↪→ (R̂/Îk)W , so that Î(k) ∩ R = I(k), for all

k ≥ 1. Thus, u ∈ Î(hn+en). On the other hand, we clearly have

I(k)R̂ = IkR̂U ∩ R̂ ⊆ IkR̂W ∩ R̂ = Î(k).

If P is an associated prime of R̂/Î(k), P ∩W = ∅, so P is contained in a minimal

prime of Î, and thus P is also an associated prime of I(k)R̂. It follows from this
that I(k)R̂ = Î(k), for all k. Therefore, ((IR̂)(e+1))n = (Î(e+1))n, and therefore,

anu 6∈ (Î(e+1))n. So, we may begin again assuming that S is a complete regular
local ring, and we have a counter-example in R as above to our proposition.

At this point one uses Artin approximation to find an counter-example in an
affine algebra over a field of characteristic zero. If we were only working with S,
then by [8], Theorem 4.3 we could create a counter-example in an affine algebra, but
we need to preserve our counter-example in a ring over S. We may therefore, follow
the path laid out in [13], Theorem 4.7 and the Appendix. One uses equations over
S to capture the ring structure of R. For example, since R is free over S with basis
1, x, . . . , xn−1, where f(X) has degree n, one writes each product xi ·xj in terms of
the basis with coefficients in S. The resulting equations can be thought of solutions
over S to a system of equations in n variables over S. Similarly, one can realize
the associative property of multiplication and the distributive property as solutions
to equations over S. Since the ideal I is a submodule of R as an S-module, one
can choose a set of generators for I and write equations expressing the closure of I
under multiplication by elements of R, using the consequences of taking products
of the basis elements of R over S with the generators of I as an S-module. As in [8],
Theorem 4.3, one can transfer all of this data and the attendant data associated to
our counter-example to a finitely generated algebra over the coefficient field, say E,
of S. Here we are thinking of S as a formal power series ring in d variables over E.
In fact, one first adjoins to E all of the relevant elements from S that are solutions
to the various equations tracking the data to obtain a subring ring S0 and then uses
[8] (which relies upon [3]) to find a ring S1 and maps S0 ↪→ S1 → S in which all
of the conditions from S are preserved, and such that all of the ideals and modules
that we started with in S are obtained by tensoring their counterparts in S1 with S
over S1. Moreover, S1 is a regular ring and the counter-example in question holds
in the extension R1 := S1[x]. Note that this can be done so that the element x still
satisfies the equation xn− a = 0, a is square-free in S1 and the rings R1 and R1/I1
are reduced, where I1 is generated by the images in S1 of the original generators of
I. Now, strictly speaking, the field E is not the original field E0 contained in the
original S, but one can assume E0 ⊆ E, and the last paragraph of [10], Theorem
3.5.1 explains how to reduce to the case that E0 = E.

The next step is to reduce to an affine algebra over Z, which can be done in a
standard way by collecting all coefficients of all the finitely many equations which
describe our situation, and then letting A be the finitely generated Z-algebra ob-
tained as the subring of the base field given by adjoining those finitely many ele-
ments to Z. One further uses generic flatness to insure that after creating models
RA and (R/I)A of R and R/I over this finitely generated Z-subalgebra A of k, there
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exists a dense subset of closed points S ⊆ SpecA such that we still a counterex-
ample after moding out any one of the closed points in S. These counterexamples
now live in positive characteristic, and by choosing the characteristic large enough
we can avoid any divisors of our fixed integer n. Moreover, as described in Chapter
2 of [10] and [8, Theorem 4.3], we retain all relevant information, including ana-
lytic spreads and the various ideals being reduced. This leads to a contradiction by
Proposition 4.2. �

The following is the main result of this section.

Theorem 4.4. Let S be a finite dimensional excellent regular domain contain-
ing a field and suppose that S satisfies our standard hypothesis. Take a ∈ S
square-free, n ≥ 1 and set R := S[ n

√
a]. If S has positive characteristic, as-

sume that S is F -finite, and p does not divide n. Then R := S[ n
√
a] satisfies

the uniform symbolic topology property on prime ideals.

Proof. By Proposition 4.3, a2 is a uniform multiplier for symbolic powers for R
with index d. In particular, a2nQ(dn) ⊆ Qn for all n, where d := dim(S).

Now, consider the set U of prime ideals in R not containing a. We claim there
exists k1 ≥ 1 such that Q(k1n) ⊆ Qn, for all Q ∈ U and n ≥ 1. Since in either
characteristic, R admits a uniform multiplier for symbolic powers with respect to
U (namely a2), by Theorem 3.5 it suffices to find b ≥ 1 such that for all Q ∈ U ,
Q(b+1) ⊆ Ql+1, where l is the uniform Artin-Rees number for (a2) ⊆ R. For any
such Q, set q = Q ∩ S. Then by Theorem 4.1, there exists N ≥ 1, independent of
Q, such that Q(Nw) ⊆ (aQ(w), qw), for all w ≥ 1. It follows from this, that for any

t ≥ 1, Q(Ntw) ⊆ (atQ(w), qw), for all w ≥ 1.
Thus, taking t = 2(l + 1) and w = (l + 1)d, we have for all Q ∈ U :

Q(N2(l+1)(l+1)d) ⊆ (a2(l+1)Q((l+1)d), qd(l+1))) ⊆ (Ql+1, qd(l+1)) = Ql+1.

Thus, if we set b = N2(l+1)(l + 1)d − 1, we obtain Q(b+1) ⊆ Ql+1, for all Q not
containing a, which gives the k1 we seek.

Now, let V denote the set of prime ideals in R containing a. Then for any Q ∈ V ,
Q is the only prime in R lying over Q∩S. Thus, by Theorem 2.4, there exists k2 ≥ 1,
such that Q(k2n) ⊆ Qn, for all Q ∈ V and n ≥ 1. If we take c = max{k1, k2}, it
follows that Q(cn) ⊆ Qn for all Q in Spec(R) and n ≥ 1, which is what we want. �

Remark 4.5. Unfortunately, we are not able to extend Theorem 4.4 to the case of
radical ideals. If I ⊆ S[ n

√
a] is a radical ideal and a ∈ S is a square-free element not

belonging to any minimal prime of I, then the proof of Theorem 4.1 goes through,
and thus also, the corresponding part of Theorem 4.4. On the other hand, if a
belongs to every minimal prime of I, then by making a minor modification of the
Ascent Theorem, one can show that the corresponding part of Theorem 4.4 also
goes through. The problem comes when I is an intersection of both types of primes.
In this case we can write I = K ∩ L, where every minimal prime over K does not
contain a and every minimal prime over L contains a. There is a uniform c such that
K(cn) ⊆ Kn and L(cn) ⊆ Ln, for all such K, L and all n. Thus, I(cn) ⊆ Kn ∩ Ln.
It is easy to show there exists t ≥ 1 such that Knt ∩Lnt ⊆ In and thus I(ctn) ⊆ In
for all n, but we do not know if such a t exists uniformly, independent of I.
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5. Repeated radical extensions

In this section we extend the main result in the previous section to the case
R = S[ n

√
a1, . . . , n

√
ar], with a1, . . . , at ∈ S square-free and sufficiently general.

We begin with a definition.

Definition 5.1. Let S be an integrally closed domain, n ≥ 1, and a1, . . . , ar square-
free elements. We say that n and a1, . . . , ar satisfy property (*) if n is a unit and
no two of ai and aj are contained in the same height one prime of S.

Proposition 5.2. Let S be an integrally closed Noetherian domain, n ≥ 1 and
a1, . . . ar ∈ S square-free elements satisfying property (*). Then a2, . . . , ar are
square-free in S[ n

√
a1].

Proof. Fix b := ai, i 6= 1 and set a1 = a. If b is not a unit we have to show that
if Q ⊆ S[ n

√
a] is a height one prime containing b, then bS[ n

√
a]Q = QS[ n

√
a]Q. Fix

such a Q and let q = Q ∩ S. For f(x) = Xn − a ∈ S[X], consider its image in
k(q)[X]. By our assumption on n and the height one primes containing a and b, the
images of f ′(X) and f(X) are relatively prime over k(q), so f(X) has distinct roots
over the algebraic closure of k(q), and thus f(X) factors as a product of distinct
irreducible polynomials over k(q), say f(X) ≡ p1(X) · · · pr(X). It follows that in
Sq[X],

Q′q = (q, pi(X))Sq[X],

for some i, where Q′ is the lift of Q to S[X]. Without loss of generality, we assume
i = 1. On the other hand, in Sq[X],

f(X) = p1(X) · · · pr(X) + q0(X),

where q0(X) ∈ qSq[X]. Thus,

f(X)S[X]Q′ = (p1(X) + uq0(X))S[X]Q′ ,

for for u = (p2(X) · · · pr(X))−1. Thus, in S[ n
√
a]Q, p1(X) ≡ −uq0(X), and hence

QS[ n
√
a]Q = qS[ n

√
a]Q. Since bSq = qSq, we have bS[ n

√
a]Q = QS[ n

√
a]Q, which is

what we want. �

Proposition 5.3. Let S be a Noetherian integrally closed domain, n ≥ 1, and
a1, . . . , ar square-free elements satisfying (*). Then R = S[ n

√
a1, . . . , n

√
ar] is inte-

grally closed.

Proof. Induct on r. If r = 1, then as mentioned in the first paragraph of the
previous section, R is integrally closed. Suppose r > 1. Set T := S[ n

√
a1]. Then

by the Proposition 5.2, a2, . . . , ar are square-free in T . Morevover, it is clear that
for i, j ≥ 2, no two of ai and aj are contained in the same height one prime of T .
Thus, R = T [ n

√
a2, . . . , n

√
ar] is integrally closed, which gives what we want. �

Proposition 5.4. Let S be a finite dimensional excellent regular domain contain-
ing a field and fix n ≥ 1. Assume that if S has characteristic p > 0, then S
is F -finite and p does not divide n. Let a1, . . . , ar be square-free elements in S
satisfying condition (*). Set R := S[ n

√
a1, . . . , n

√
ar] and a := a1 · · · ar. Then a2

is a uniform multiplier for symbolic powers with index d := dim(R) for the set of
radical ideals in R.
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Proof. The proof is similar to the proof of Proposition 4.3. We begin by considering
the case that S has characteristic p > 0. For each 1 ≤ i ≤ r, set Ri := S[ n

√
ai]. By

Proposition 4.2, aiR
1/q
i ⊆ S1/q[Ri], for all i and all q. If we set a := a1 · · · ar, it

follows that aR1/q ⊆ S1/q[R], for all q. As in the proof of Proposition 4.2,

Fq = S1/q ⊗S R = S1/q[R]

is a flat R-module for all q, since S1/q is a flat S-module. On the other hand, a is
a test element by [9], Theorem 6.9, and so this case follows from Lemma 3.3. If S
has characteristic zero, we may reduce to the case of positive characteristic, as in
the proof of Proposition 4.3. �

Theorem 5.5. Let S be a finite dimensional regular domain containing a field and
assume S satisfies our standing hypothesis. Fix n ≥ 1 and assume that if S has
characteristic p > 0, then S is F -finite and p does not divide n. Let a1, . . . , ar
be square-free elements in S satisfying condition (*). Then R := S[ n

√
a1, . . . , n

√
ar]

satisfies the uniform symbolic topology property on prime ideals.

Proof. Again, the proof is similar to the case of a simple radical extension. We
proceed by induction on r, the case r = 1 having been handled in the previous
section. Set a := a1 · · · ar, and for each 1 ≤ i ≤ r, set

Ri := S[ n
√
a1, . . . , n

√
ai−1, n

√
ai+1, . . . , n

√
ar].

Each Ri satisfies the uniform symbolic topology property, by our induction hypoth-
esis.

Let us first consider the set of prime ideals U ⊆ Spec(R) not containing a. Then,
by Proposition 5.4, a2 is a uniform multiplier for symbolic powers for U with index
d. On the other hand, by Propositions 5.2 and 5.3, each Ri is integrally closed and
ai is square-free in Ri. Thus, by Theorem 4.1, there exists Ni such that for all
Q ∈ U ,

Q(Niw) ⊆ (aiQ
(w), qwi ),

for all w ≥ 1, where qi = Q ∩Ri. Thus,

Q(Niw) ⊆ (aiQ
(w), Qw),

for all w. It follows from this, that if we set N := N1 · · ·Nr, then

Q(Nw) ⊆ (aQ(w), Qw),

for all w ≥ 1 and Q ∈ U , and thus,

Q(Ntw) ⊆ (atQ(w), Qw),

for all t ≥ 1, w ≥ 1 and Q ∈ U . We are now in the same situation as in the proof
of Theorem 4.4, so that if we let l denote the uniform Artin-Rees number for the
pair (a2) ⊆ R, t := (l + 1)2, w := (l + 1)d, and b = N2(l+1)(l + 1)d − 1, then
Q(b+1) ⊆ Ql+1, for all Q ∈ U . Since a2 is a uniform multiplier for symbolic powers
for U with index d, it follows from Theorem 3.5, that there exists k ≥ 1 such that
Q(kn) ⊆ Qn, for all n ≥ 1 and all Q ∈ U .

We now consider the set of primes V ⊆ Spec(R) containing a. We can write
V = V1 ∪ · · · ∪ Vr, where Vi denotes the set of primes in R containing ai. For each
prime Q ∈ Vi, Q is the only prime in R lying over Q ∩ Ri. Thus, by Theorem 2.4
and our induction hypothesis, there exists ci such that Q(cin) ⊆ Qn, for all Q ∈ Vi
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and n ≥ 1. If we now take c = max{k, c1, . . . , cr}, it follows that Q(cn) ⊆ Qn, for
all n ≥ 1 and all Q ⊆ R. �

6. Abelian extensions

We begin by recalling the basic fact of Kummer theory. Let L ⊆ K be a finite,
Galois extension of fields such that the Galois group of K over L is abelian. Let n
denote the index of the Galois group of K over L, i.e., n is the least positive integer
such that nth power of every element in the group is the identity element. Then
Kummer theory states that if L contains a primitive nth root of unity, then there
exist c1, . . . , cs ∈ L such that K = L( n

√
c1, . . . , n

√
cs). Here, one must assume that

if L has positive characteristic p > 0, then p does not divide n.
The next theorem is the main theorem of our paper. Most of the hard work has

been done. What remains is to reduce to the case of a repeated radical extension.

Theorem 6.1. Let S be a finite dimensional excellent regular domain containing
a field and suppose that S satisfies our standing hypothesis. Let R be an abelian
extension of S and assume that if S has characteristic p > 0, then S is F -finite
and p does not divide the index of the associated Galois group. Then R satisfies the
uniform symbolic topology property on prime ideals.

Proof. Let L denote the quotient field of S and K the quotient field of R. Thus
K is a Galois extension of L with abelian Galois group and R is the integral clo-
sure of S in K. Let n be the index of the Galois group of K over L. Since
the uniform symbolic topology property descends in a finite extension of integrally
closed domains, by Theorem 2.5, it suffices to show R is contained in an extension
of the form S[ n

√
a1, . . . , n

√
ar], such that the conditions in Theorem 5.5 hold. In

fact, we will have to make a few minor modifications to S and R to obtain such a
relation, but the strategy is still the same.

Let ε denote a primitive nth root of unity. We will first reduce to the case
that ε ∈ L, or equivalently, ε ∈ S. Suppose ε 6∈ L. Then the Galois group of
K(ε) over L(ε) is a subgroup of the Galois group of K over L (even if ε ∈ K),
thus the former group is abelian, and its index divides n, and thus is not divisible
by p, if the characteristic of L is p. Set S1 := S[ε], so that the quotient field of
S1 is L(ε) and S1 is a regular domain satisfying the hypotheses of the theorem.
The proof that S1 is regular is similar to the proof in Proposition 5.2. In other
words, it suffices to see that if g(X) is the minimal polynomial of ε over L, then
for any prime q ⊆ S, g(X) factors as a product of distinct irreducible polynomials
over k(q). But since the images of Xn − 1 and its derivative are relatively prime
over k(q), Xn − 1 factors as a product of distinct irreducibles over k(q), so the
same applies to g(X), and thus S1 is regular. Now if R1 denotes the integral
closure of S1 in K(ε) and the conclusion of the theorem holds for R1, then since
the uniform symbolic topology property descends in the finite extension R ⊆ R1,
R satisfies the uniform symbolic topology property. Thus, we may begin again,
assuming that S contains a primitive nth root of unity.

We now reduce to the case where S is a UFD. Let X be an indeterminate and
write S(X) for the ring S[X] localized at the set of polynomials whose coefficients
generate S. Note also that S(X) is a regular domain satisfying the hypotheses of
the theorem, since the maximal ideals of S(X) are of the form mS(X), for m ⊆ S
a maximal ideal. Thus, S(X) is locally a UFD. On the other hand, since invertible
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ideals in S(X) are principal ([1], Theorem 2.1 (5); see also [6]), S(X) is a UFD.
It is straight forward to check that S(X) ⊆ R(X) is an abelian extension with the
same Galois group as S ⊆ R. Suppose there exists c ≥ 1 such that P (cn) ⊆ Pn, for
all prime ideals P ⊆ R(X) and all n ≥ 1. For any prime ideal Q ⊆ R, QR(X) is a
prime ideal satisfying

Q(cn)R(X) = (QR(X))(cn) and QnR(X) ∩R = Qn,

for all n. It follows that Q(cn) ⊆ Qn, for all Q ⊆ R and all n. Thus, we may begin
again assuming that, in addition to our hypotheses on S, S is a UFD containing a
primitive nth root of unity.

By Kummer theory, there exist c1, . . . , cs such that K = L( n
√
c1, . . . , n

√
cs), with

each cj ∈ L. Suppose we could find a1, . . . ar square-free elements in S satisfy-
ing (*) such that K ⊆ K ′ := L( n

√
a1, . . . , n

√
ar). If T is the integral closure of

R in K ′, then on the one hand, since the uniform symbolic topology property de-
scends in a finite extension of integrally closed domains, R will have the uniform
symbolic topology property if T does. On the other hand, since S[ n

√
a1, . . . , n

√
ar]

is integrally closed by Proposition 5.3, T = S[ n
√
a1, . . . , n

√
ar], and so T has the

uniform symbolic topology property, by Theorem 5.5. Thus, it remains to find
a1, . . . ar square-free elements in S satisfying (*), so that K ⊆ K ′. For this, we first

note that if c ∈ L can be written as c = a
b , with a, b ∈ S, then L( n

√
c) ⊆ L( n

√
a, n
√
b),

Thus, we may enlarge K and begin again, assuming K = L( n
√
c1, . . . , n

√
cs) with

each ci ∈ S.
Now, since S is a UFD, each ci is a unit or product of prime elements. Let

a1, . . . , ar denote the collection of prime elements or units occurring as a factor of
some ci. These are clearly square-free elements satisfying (*). Suppose that in S

we can write each ci := a
di1n+ei
i1

· · · aditn+etit
, where each 0 ≤ ei < n. Then for

γi := a
di1
i1

( n
√
ai1)ei1 · · · aditit ( n

√
ait)

eit ,

γn = ci, so S[ n
√
ci] ⊆ S[ n

√
ai1 , . . . , n

√
air ], and hence L( n

√
ci) ⊆ L( n

√
ai1 , . . . , n

√
air ).

Doing this for each ci shows K is contained in L( n
√
a1, . . . , n

√
ar), which is what we

want. �

References

[1] D.D. Anderson, D.F. Anderson, and R. Markanda, The rings R(X) and R〈X〉, J. Algebra 95

(1985), 96–115.
[2] A. More, Uniform bounds on symbolic powers, J. Algebra 383 (2013), 29-41.

[3] M. Artin and C. Rotthaus A structure theorem for power series rings, Algebraic Geometry

and Commutative Algebra, Vol. I, Kinokuniya, Tokyo (1988) 35–44.
[4] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathemat-

ics 39 (1993), Cambridge University Press, Cambridge, United Kingdom.

[5] L. Ein, R. Lazarsfeld and K. Smith, Uniform bounds and symbolic powers on smooth varieties,
Inventiones Math. 144 (2), 241–25 2 (2001).

[6] D. Ferrand, Trivialisation des modules projectifs. La method de Kronecker, J. Pure Appl.

Algebra 24 (1982), 261–264.
[7] M. Hochster, Symbolic Powers in Noetherian Domains, Illinois J. Math., 15 (1971), 9-27.

[8] M. Hochster and C. Huneke, Comparison of symbolic and ordinary powers of ideals, Inven-
tiones Math. 147, 349–369 (2002)

[9] M. Hochster and C. Huneke, Tight closure, invariant theory and the Briancon-Skoda theorem,

Journal of the American Mathematical Society, 3, no. 1 (1990), 31–116.

[10] M. Hochster and C. Huneke, Tight closure in equal characteristic zero, preprint.



16 CRAIG HUNEKE AND DANIEL KATZ

[11] C. Huneke, Uniform bounds in Noetherian rings. Inventiones Math., 107, (1992), 203-223.

[12] C. Huneke, Desingularizations and the uniform Artin-Rees theorem, J. London Math. Soc.

(2) 62 (2000), 740–756.
[13] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), 293–318.

[14] C. Huneke and D. Katz, Uniform symbolic topologies and hypersurfaces, preprint.

[15] C. Huneke, D. Katz, and J. Validashti, Uniform equivalence of symbolic and adic topologies,
Illinois J. Math. 53 (2009), 325–338.

[16] C. Huneke, D. Katz, and J. Validashti, Uniform symbolic topologies and finite extensions, Jl.

Pure and Applied Algebra, 219 (2015), 543–550.
[17] L. Ma and K. Schwede, Perfectoid multiplier/test ideals in regular rings and bounds on

symbolic powers (2017), arXiv:1705.02300.
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