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tλESSENTIAL PRIME DIVISORS AND

SEQUENCES OVER AN IDEAL

DANIEL KATZ AND LOUIS J. RATLIFF, JR.

§ 1. Introduction

All rings in this paper are assumed to be commutative with identity,
and they will generally also be Noetherian.

In several recent papers the asymptotic theory of ideals in Noetherian
rings has been introduced and developed. In this new theory the roles
played in the standard theory by associated primes, i?-sequences, classical
grade, and Cohen-Macaulay rings are played by, respectively, asymptotic
prime divisors, asymptotic sequences, asymptotic grade, and locally quasi-
unmixed Noetherian rings. And up to the present time it has been shown
that quite a few results from the standard theory have a valid analogue
in the asymptotic theory, and a number of interesting and useful new re-
sults concerning the asymptotic prime divisors of an ideal in a Noetherian
ring have also been proved. In fact the analogy between the two theories
is so good that a very useful (but not completely valid) working guide
is: results from the standard theory should have a valid analogue in the
asymptotic theory. And, although asymptotic sequences are coarser than
i?-sequences (for example, they behave nicely when passing to Rjz with z
a minimal prime ideal in i?), the converse of this working guide has also
proved useful.

However, in a number of problems it has turned out that the asymp-
totic theory is a little too coarse, so it seemed worthwhile to try to
develop a new theory that behaved nicely when passing to R\z with z an
arbitrary prime divisor of zero (rather than just a minimal prime divisor
of zero). Such a theory would then be intermediate between the standard
and asymptotic theories, and would thereby surmount some of the prob-
lems encountered in the asymptotic theory. One candidate for this new in-
termediate theory was developed in [7], where it was called the "essential"
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theory. (The word "essential" was chosen because of the fact that if R
is a semi-local domain and 0* cz Speci?, then Π {i?P;Pe^} is a finite R-
module if and only if every essential prime divisor of a principal ideal in
R is contained in some P e ^ ; thus the localizations at these primes are
somewhat analogous to the essential valuations of a Krull domain (whose
intersection is the Krull domain).) It was shown in [7] that the essential
theory is a good candidate for this new intermediate theory, since most
of the results from the other two theories that are concerned with prime
divisors, sequences, and grade have a valid analogue in the new theory.
However, the analogy breaks down in two important regards. First, the
essential prime divisors of I do not coincide with the asymptotic prime
divisors of I when R is local and its completion has no imbedded prime
divisors of zero. And, second, it was shown in [19] that many of the
results concerning sequences over an ideal and the cograde of an ideal
in the other two theories do not have a valid analogue in the essential
theory. Thus this new essential theory falls short of being the desired
intermediate theory.

Therefore, in the present paper, we present a new candidate for this
intermediate theory, and call it the "^-essential" theory. (The name comes
from the fact that the u-essential prime divisors of I are the contractions
to R of the essential prime divisors of (u) in the Rees ring of R with
respect to J.) In this new theory the two deficiencies in the essential
theory mentioned in the preceding paragraph are repaired, and it turns
out to be an excellent analogue of the standard and asymptotic theories
in all regards. Also, to some extent it emcompasses both the asymptotic
and essential theories, since the asymptotic and essential prime divisors
of I are also ^-essential prime divisors of 7.

In some preliminary applications of this new theory, the second author
has shown that a prime ideal P in a Noetherian ring R has a primary
ideal q all of whose powers are primary if and only if there exists some
ideal / c: P such that P is the only w-essential prime divisor of I. Then,
because of the results on ^-essential prime divisors established in (2.5),
this leads to several other such primary ideals, both in R and in certain
rings related to R. Also, w-essential prime divisors have yielded some
new results concerning Ker (R[XU ->Xn] -» R[bJb09 , bjbo]) and also
the ring J?(1) = Π {RP; height P = 1}. Thus this new theory seems to be
very useful in surmounting some of the problems encountered when using
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the asymptotic theory, so we thought it would be desirable to have a
paper where the basics of the w-essential theory are developed—and this
is the purpose of the present paper.

In Section 2 we develop quite a few of the basic properties of in-
essential prime divisors. In particular, it is shown that they behave nicely
when passing to localizations, factor rings modulo prime divisors of zero,
faithfully flat Noetherian extension rings, and finite integral extension
rings.

In Section 3 it is shown that ^-essential sequences over an ideal /
also behave nicely when passing to the same type of related rings, and
in Section 4 it is shown that this also holds for the u-essential cograde
of I. In Section 5 several preliminary results for Section 6 are proved,
and in Section 6 it is shown that most of the bounds on the asymptotic
cograde of I given in [6] have a valid analogue for the w-essential cograde.
Finally, in Section 7 we give several examples to show some of the dif-
ferences between essential sequences over I and w-essential sequences
over I.

As already mentioned, the results in this paper are closely analogous
to the previously developed asymptotic theory. They are meant to pres-
ent a new intermediate theory between the standard and asymptotic
theories, and we feel these results show that the u-essential theory is the
natural choice for such an intermediate theory. The applications of this
new theory to date have been very promising, and we think this new
theory will have many important applications in future work on the ideal
theory of Noetherian rings.

We are indebted to the referee for his suggestions on simplifying
several of our proofs and for correcting our original proofs of (5.1) and
(7.2).

§2. (/-essential prime divisors

In this section we prove a number of properties of the w-essential
prime divisors of an ideal / in a Noetherian ring R. (The name comes
from their definition: they are the contraction to R of the essential prime
divisors of u in the Rees ring of R with respect to /.) These prime ideals
were first considered in [3], and a few of their basic properties were
established there. In this section we give a more complete study of these
ideals. We begin with the basic definitions.
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All rings in this paper are commutative with identity and they will

generally be Noetherian. If R is a semi-local (Noetherian) ring, then R*

will denote the completion of R in its natural topology. And if I is an

ideal in a Noetherian ring JR, then S/t = &(R,1) will denote the Rees ring

of R with respect to I; that is, 0t = R[u, tl], where t is an indeterminate

and u = 1/ί. Thus 0t is a graded Noetherian subring of R[u, t], u is a

regular element in 31, and unSt D R = In for all n > 1.

(2.1) DEFINITION. Let I be an ideal in a Noetherian ring R and let

bl9 , bd be nonunits in R. Then:

(2.1.1) A*(I) = {P e Spec iϊ; P e Ass J?//re for all large /ι}, A*(I) = {P e

Speciϊ; Pe Ass R/(In)a for all large τι}, where (Jn)α is the integral closure

in R of In, E(I) = {PeSpecΛ; I(RP)* + z is P^)*-primary for some

2 e Ass (RP)*}, and, C7(J) = {p Γ) R; p e E(u@(R, /))}. P is an asymptotic

(resp., essential, u-essentίal) prime divisor of I in case PeA*(I) (resp.,

PeE(I), PeU(I)).

(2.12) bu - ,bd are an asymptotic (resp., essential, u-essentiaΐ) sequence

over I in case (/, bu , bd)RψR and ί̂  β U A*((/, 6lf , fei.^i?) (resp.,

M U JF((J, 6,, , 6^)22), ba U E/(I, 6l5 , δ , . ^ ) ) for ί = 1, . ., d. An

asymptotic (resp., essential, w-essential) sequence over (0) is simply called

an asymptotic (resp., essential, u-essentίaΐ) sequence in R. (It is shown in

(3.10) that 6j, , ba are a w-essential sequence in R if and only if they

are an essential sequence in R, so the terminology "^-essential sequence

in JR" will only be used till (3.10) is proved.)

(2.1.3) The asymptotic (resp., essential) grade of I, denoted agd(/)

(resp., egd(J)) is the length of an asymptotic (resp., essential) sequence

maximal with respect to coming from J.

(2.1.4) If R is local, then the asymptotic (resp., essential, u-essential)

cograde of I, denoted acogd (I) (resp., ecogd (/), uecogd (/)), is the length

of a maximal asymptotic (resp., essential, w-essential) sequence over I.

The concepts of a zz-essential sequence over / and of uecogd (/) are

new to this paper. But the other concepts defined in (2.1) have previously

been studied and a number of their properties have been determined. In

what follows we will need to use several of these properties, so (2.2)

contains a list of those that are most often used below.

(2.2) Remark. Let I be an ideal in a Noetherian ring R. Then the

following hold:
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(2.2.1) The sets Ass Rjln and Ass RI(In)a are stable for all large τι,

by [1] and [17, (2.7)] (see also [8]), so A*(J) and A*(I) are well defined

finite sets of prime ideals. Also, A*(J) c A*(/) and E(I) c A*(/), by [17,

(2.7)] and [7, (3.3.1)], so E(I) is also a finite set of prime divisors of In

for all large n.

(2.2.2) It is clear from the definitions that each minimal prime divisor

of I is in A*{I) Π E(I).

(2.2.3) If z € Ass R and P is a minimal prime divisor of I + z, then
PeE(I), by [7, (3.3.4)].

(2.2.4) If P e Spec R and S is a multiplicatively closed set in R such
that Ps ψ Rs, then Pe A*(I) (resp., #(/)) if and only if Pse A*(IS) (resp.,

E(IS)\ by [18, (2.9.2)] (resp., [7, (3.3.2)]).

(2.2.5) PeA*(I) (resp., E(I)) if and only if P/z e A*((I + z)\z) (resp.,

E((I + z)/2)) for some minimal (resp., for some) z e Ass i?, by [17, (6.3)]

(resp., [7, (3.6)]).

(2.2.6) If A is a Noetherian ring which is a faithfully flat i?-module,

then A*(I) = A*(IA) Π R (resp., E(I) = E(IA) Π R), and if PeA*(J) (resp.,

E(I)) and P * is a minimal prime divisor of PA, then P * e ^ί*(/A) (resp.,

E{IA)\ by [17, (6.5) and (6.8)] (resp., [7, (3.7)]).

(2.2.7) If B is a finite integral extension ring of R, then A*(I) c:

A*(JB) (Ί # (resp., #(/) c £(IJ3) Π R). Moreover, if z e Ass B implies

2 Π R e Ass iϊ, then equality holds, by [20] (resp., [7, (3.9)]).

(2.2.8) If J is an ideal in R such that Rad J = Rad Z, then 2?(J) =

E(I), by [7, (3.3.5)].

(2.2.9) It follows immediately from (2.1.2) that if 61? , bd in R are an

asymptotic (resp., essential) sequence over 7, then height (I, 6j, , 6̂ )22 >

height J + d. Therefore, by the Generalized Principal Ideal Theorem,

if bu -',bd are an asymptotic (resp., essential) sequence in R, then

h e i g h t ( 6 , , -. ,bd)R = d.

(2.2.10) If bl9 , bd in R are an asymptotic (resp., essential) sequence

over I and S is a multiplicatively closed set in R such that (J, bl9 , 6d)

i?5 :£ Rs, then the images of bu , &d in i?5 are an asymptotic (resp.,

essential) sequence over Is, by [18, (2.9.2)] (resp. [19, (2.3)]).

(2.2.11) Elements bu , bd in R are an asymptotic (resp., essential)

sequence over I if and only if their images in R\z are an asymptotic

(resp., essential) sequence over (J + z)\z for all minimal (resp., for all)

z e Ass B, by [17, (6.3)] (resp., [19, (2.4)]).
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(2.2.12) If A is a Noetherian ring which is a faithfully flat .R-module,

then bί9 , bd in R are an asymptotic (resp., essential) sequence over /

if and only if they are an asymptotic (resp., essential) sequence over I A,

by [17, (6.5) and (6.8)] (resp., [19, (2.5)]).

(2.2.13) Agd(7) (resp., egd(J)) is unambiguously defined and agd(J)

(resp., egd (/)) = min {height (I(ΛP)* + z)/z; I cz Pe Spec R and z is mini-

mal in Ass (RP) (resp., z e Ass (RP)*)}, by [18, (3.1)] (resp., [19, (5.3)]).

(2.2.14) If i? is local, then acogd(I) (resp., ecogd(J)) is unambigu-

ously defined and acogd(J) = min {depth z — £((IR* + z)/z); z is minimal

in Ass i?*} (resp., ecogd(I) = min {depth (IR* + z); z e Assi?*}), by [2] (resp.,

[19, (3.2)]). Here £(J) denotes the analytic spread of the ideal J.

We now begin considering w-essential prime divisors. Our first result,

(2.3), contains three of their basic properties.

(2.3) Remark. If I is an ideal in a Noetherian ring R, then the fol-

lowing hold:

(2.3.1) E7((0)) = Ass R.

(2.3.2) If P is a minimal prime divisor of /, then P e U(I).

(2.3.3) U(I) c A*(I).

Proof. Note that 0t = &(R, (0)) = R[u] and u is an indeterminate.

Therefore E(μ9t) = E(uR[u]) = {(z, u)R[u] zeE((0R))}, by [19, (2.7)], and

E((0R)) = Ass R, by [7, (3.3.3)], so 17((O)) = {(z, ϋ)Λ Π R; z e Ass R} = Ass R.

This proves (2.3.1).

For (2.3.2) let 9t = 0t(R, I). Then u@ f] R = I, so if P is a minimal

prime divisor of I, then there exists a minimal prime divisor p of uέ% such

that p Π R = P, and p e EiμSt), by (2.2.2), so P e U(I).

For (2.3.3), let St = &(R, I). Then it was shown in [4, Corollary 17]

that if p is a prime divisor of u^t such that tl gl p, then p Π Re A*(I).

And in [16, Corollary 3.16] it was shown that if I c P e Ass i?, then

P e A*(I). Therefore it suffices to show that if p e E{μ9t) and P = p Π R,

then either P e Ass R ox tl gL p. For this, assume that P g Ass i? and

suppose that ί / c p , Let S = R - P. Then «(ΛP, IP) = StSy tIP c p < ^ ,

and p ^ 5 e E(u0ts), by (2.2.4). Also P P β Ass RP, so it may be assumed that

R is local with maximal ideal P. Let 9> = 0l(R*y IR*). Now p is the

maximal homogeneous ideal in ^?, since {u, P, tI)Θί c p, so p ^ is the

maximal homogeneous ideal in £f and 0tv is a dense subspace of ϊf^, by [12,

Lemma 3.2]. Let L — ϋf^, so L* = ( ^ ) * , and so there exists z* e Ass L*
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such that (2*, u)L* is pL*-primary, since p e E(u&). Let z = z* Π ^ and

u; = 2 Π -R*, so 2 e Ass 5*, and so w e Ass iϊ* and Sf\z ^ @(R*lw, (IR* +

itf)/α;), by [22, Theorem 1.5 and Lemma 1.1]. Now pέfjz is a maximal ideal

in 9>\z and <^/p^ = R*/PR*9 and trd (y/z)l(R*[w) = 1, by the isomorphism,

so height p^/2 + 0 == height PR*/w + 1, since i?*/u; satisfies the altitude

formula. Therefore, since P e Ass i?, it follows that height PR*jw > 1, so

height p^jz > 2. But L/zL is unmixed and analytically unramified, by [15,

(6.5)], and 2* is a prime divisor of 2L*, so necessarily z*jzL* is a minimal

prime ideal and (z*9 u)L*jzL* is pL*/2L*-primary. Hence heightpL*jzL*

= 1, and so height p^jz = 1, and this is a contradiction. Therefore £/ £ p,

so C7(I) c A*(/). q.e.d.

Before proving the main result in this section, (2.5), we need the fol-

lowing lemma which shows that in an important special case the asymp-

totic, essential, and w-essential prime divisors of certain ideals are all the

same.

(2.4) LEMMA. Let R be a locally unmixed Noetherian ring, let

bu ,bd be elements in R such that height (bu , b^R = i for i = 1, , d,

and let B — (bu , bd)R. Then bu , bd are an essential sequence in R

and Ά*(B) = E(B) = U(B) = {PeSpecR; P is a minimal prime divisor

of B),

Proof. It is shown in [7, (6.1)] that bu --',bd are an essential se-

quence in R and that E(B) = ^ , where £P = (Pe Spec R; P is a minimal

prime divisor of B}. Also, since R is also locally quasi-unmixed and B

is an ideal of the principal class, A*(B) = 9 (by [13, Theorem 2.12]).

Now let P e U(B) and let p e E(μ9t) such that p Π R = P, where 0t =

0ί(R, B). Then it follows from [9, Corollary, p. 61] that 9t is locally

unmixed, so heightp = 1, by [7, (6.1)]. Let 2* e Ass St such that z* C p

and let z = 2* Π R. Then zeAssR and ^/z* = 9t{β\z, (B + z)\z), by [22,

Theorem 1.5 and Lemma 1.1], and R\z satisfies the altitude formula, by

[12, Corollary 2.7]. Therefore height p/z* + trd (^/p)/(i?/P) = height P\z +

trd (@lz*)l(Rlz); that is, t = trά (&lp)l(R/P) = height P/z. But t < d (since

uep and ^ is generated by u, tbu --',tbd over 2?), and height P/2 > d,

by (2.2.9) (since the images of bu , 6d in i?/^ are an essential sequence,

by (2.2.11)). Therefore height P/z = d. Now RP satisfies th? first chain

condition for prime ideals, since RP is unmixed, so it follows that height P

= d, so P e ^ , hence £/(B) c ^ . Finally, if P e ^ , then there exists a
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minimal prime divisor p of u0ί such that p Π R = P, since u& Π R = B,

so p e E(u$), by (2.2.2), hence P e £/(£), and so U(B) = &. q.e.d.

The following internal characterization of U(I) was given in [3,

Theorem 2.5]: U(I) = Π {A*(J); J i s an ideal in R and In c J c (J»)α for

some n > 1}. But even with this characterization the w-essential primes

are somewhat awkward to work with. (2.5) shows that U(I) behaves very

nicely with respect to passing to certain related rings. This is important,

since they are very useful ideals, and once (2.5) is proved they will be

considerably less awkward to work with.

(2.5) THEOREM. Let I be an ideal in a Noetherίan ring R. Then the

following hold:

(2.5.1) If S is a multiplίcatively closed set in R, then U(IS) = {Ps;

P e U(I) and P Π S = φ}.

(2.5.2) P e U(I) if and only if there exists z e Ass R such that z cz P

and P\z e U((I + *)/*).

(2.5.3) If A is a Noetherίan ring which is a faithfully flat R-module,

then U(I) = {P* Π R; P * e U(IA)}, and if P e U(I) and P * is a minimal

prime divisor of PA, then P * 6 U(IA).

(2.5.4) // B is a finite integral extension ring of R, then U(I) c:

{Pf Π R; Pr € U(IB)}, and equality holds if ze Ass B implies z Π R e Ass R.

(2.5.5) U((I, X)R[X]) = {(P, X)R[X] P e £/(/)}.

(2.5.6) If J is an ideal in R that is projectively equivalent to /, that

is, there exist positive integers m and n such that (In)a = (Jm)a, then U(J)

(2.5.7) A*(I) U E(I) c U(I).

(2.5.8) If I is generated by an essential sequence in R, then U(I) = E(I).

Proof Throughout, 3t = 3l(R91).

For (2.5.1) let Q e U(IS) and let q e E(u&(Rs, Is)) such that q Π Rs = Q.

Then 3t(Rs, Is) = Sts, so p = q ΓΊ 9t e E{u0t), by (2.2.4), hence P == p Π R e

U(Γ), by (2.1.1), and Q = P8. Conversely, if P e U(I) and P Π S - φ, then

let p e E{μ0ί) such that p f) R = P. Then ps e E(u@s), by (2.2.4), and

ps Π Rs = P8, so Ps e U(IS), by (2.1.1).

For (2.5.2) let T be the total quotient ring of &. Then Ass St =

{zT Π ^ -ε € Ass J?}, by [22, Theorem 1.5], and if z e Ass R, then ^/(zΓ Π ̂ )

= &(R/z,(I + 2)/z), by [22, Lemma 1.1]. Therefore (2.5.2) follows readily

from (2.2.5) (applied to u9l) and (2.1.1).
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For (2.5.3), let stf = &(A, lA)y so J / is a faithfully flat ^-module, by

[17, (6.4)]. Therefore, if P e U(I), then let p e E{u$) such that p Π R - P

and let p* be a minimal prime divisor of ps/. Then p* e E{ustf), by (2.2.6),

so P * = p * Π A € E7(JA), by (2.1.1), and P* Π £ - P. Therefore Z7(J) c

{P* Π R; P * e f7(IA)}, and the proof of the opposite inclusion is similar.

Finally, let P e U(I) and let P * be a minimal prime divisor of PA. Then

i?P cz AP* satisfy the Theorem of Transition. Therefore, since P P e U(IP),

by (2.5.1), it follows from what has already been proved that there exists

Q* e U(IAP<) that lies over PP9 so Q* - P**, hence P * e Ϊ7(IA), by (2.5.1).

For (2.5.4), let & = 0t(B, IB), so J is a finite integral extension ring

of 0t. Therefore the set containment follows readily from (2.2.7) (applied

to u0t) and (2.1.1). Also, the prime divisor of zero in 0ί are the ideals

zT Γ\ & with z e Ass R and T the total quotient ring of 0t9 by [22,

Theorem 1.5], and a similar statement holds for J*. Therefore the last

statement in (2.5.4) also readily follows from (2.2.7) (applied to u0t) and

(2.1.1).

For (2.5.5) let P 6 U(I). Then by (2.5.1), PP e U(IP) and if (PP, X)RP[X] e

U((IP, X)RP[X]\ then (P, X)R[X] e U((I, X)R[X])9 so it may be assumed

that R is local with maximal ideal P. Then similarly by using (2.5.3) and

(2.5.2) it may be assumed that R is a complete local domain with maximal

ideal P. Let St = @{R, I) and let p e E{u@) such that p Π R = P. Then

q - (p, X)St[X\ e E((u, X)9t{X\\ by [19, (2.7)]. Now St[X\ is locally un-

mixed, by [9, Corollary, p. 61], so height q = 2, by (2.4). Also, Xju = tX, so

q/ = q&[X, tX] is a height one prime ideal that contains u&[X, tX] and lies

over q, by [14, Lemma 2.7]. Therefore qr e E(u@[X, tX]\ by (2.2.2), and

9t\X, tX] = &{R[X\, (I X),R[X])> so (P, X)R[X] = q> Π Λ[X] e C7((J, X)B[X]).

Now let Q e U((I, X)R[X\) and let P = Q n R, so Q = (P, X)B[JSΠ.

As in the preceding paragraph it may be assumed that R is a complete

local domain with maximal ideal P. Therefore let & = £%{R, I) and, since

Ά(R[X\, (/, X)R[X]) = 9t\X, tX] = (say)^7, let qf e E{uSf) such that q' f]

R[X] = Q. Then height qf - 1, by (2.4), and (u, X)0[X] c q - q> f] <%[X],

so by the altitude formula (since R is a complete local domain) it follows

that height q = 2. Therefore q e E((u, X)0t[X]), by (2.4), and so [19, (2.7)]

implies that q = (p, X)^[X] where p - g ί l ^ e #(w^). Finally, p Π JR = P,

so P e E7(JT).

For (2.5.6), let <$* = 3t(R, Ia), so y is a finite integral extension ring

of 0ί (since I reduces Ia) and 0t and 5^ have the same total quotient ring.
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Therefore (2.2.7) implies E{u0t) = E(uS?) Π 9t. Thus it follows that

U(Ia) = [7(1).

Now let si — R[un, tnln]. Then St is a finite integral extension ring

of si and si = £%(R> In). Also, it follows from the description of Ass 0t

given in the proof of (2.5.2) that z e Ass 0t implies z f] si e Ass si. There-

fore, since E{μ9t) = E(un@), by (2.2.8), it follows from (2.2.7) that E(unsf) =

EiμSt) Π si. Therefore it follows that U(I) = U(In) and, similarly, that

U(J) = U(Jm). Also, U(In) = C/((/w)α) and C7(JW) = U((Jm)a) by the prece-

ding paragraph, so it follows from the hypothesis that U(I) = U(In) =

U((In)a) = U((Jm)a) = £7(J») = C7(J).

For (2.5.7) let P e A*(I) U E(I). Then P P e A*(IP) U #(//>), by (2.2.4),

and if PP e U(IP), then P 6 £/(/), by (2.5.1), so it may be assumed that R

is local with maximal ideal P. Then (2.2.6) and (2.5.3) show that A*(I) =

{P* Π R; P * e iί*(IR*)}, £(I) = {P* Π Λ; P * e E(IR*)}, and J7(/) = {P* ΓΊ fi;

P * e U(IR*)}. Therefore it may be assumed that R is complete. By (2.2.5),

if P e E(I) (resp., A*(I)), then there exists z e Ass R (resp., a minimal

z e Ass i?) such that z^P and P/z e E((I + z)jz) (resp., iί*((I + z)/z)).

And if P/z e U((I + z)/z), then P e [/(/), by (2.5.2), so it may be assumed

that J? is a complete local domain. Let 0t — @t(Ry I), so 9t is locally un-

mixed, by [9, Corollary, p. 61]. Then A*(I) = {p Π R; p e iί*(wΛ)}, by [17,

(2.7)], and ^*(w^) = E(uO), by (2.4), so A*(I) = U(I). Also, if PeE(Γ),

then since P is the maximal ideal in a complete local domain it follows

from (2.1.1) that J i s P-primary. Therefore E(I) c {p f] R; p is a minimal

prime divisor of w^}, since u@ Π i2 = 7, so ίJ(/) c [/(!), by (2.4).

For (2.5.8), it was shown in (2.5.7) that E(I) c U(I), so it suffices to

show the other containment. For this, let P € U(I). Then by (2.5.1) PP e
U(IP), and if PP e E(IP), then P e E(I), by (2.2.4). Also JP is generated by
an essential sequence, by (2.2.10), so it may be assumed that R is local
with maximal ideal P. Now PR* e U(IR*), by (2.5.3), and if PR* e E{IR*\

then P 6 E(I), by (2.2.6). Also IR* is generated by an essential sequence,
by (2.2.12), so it may be assumed that R is a complete local ring. Now
there exists z e Ass R such that P\z e U((I + z)/z), by (2.5.2), and if P\z e

E((I + z)lz\ then P e E(I), by (2.2.5). Also, (I + z)\z is generated by an
essential sequence, by (2.2.11), so it may be assumed that R is a complete
local domain. Therefore let 9t = £%(R, I), so 9t is locally unmixed, by [9,
Corollary, p. 61]. Now I is generated by an essential sequence, say
bl9 , bd, so height (bu , b{)R = i for i = 1, , d, by (2.2.9) (since
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bl9 , bt are an essential sequence for ί = 1, , d). Therefore E(I) =

U(I), by (2.4), so PeE(I). q.e.d.

(2.5.8) together with the internal characterization of U(I) mentioned

just before (2.5) give an affirmative answer to a question that arose in

studying essential prime divisors, namely: If / is generated by an essen-

tial sequence in R, then is E(I) = Π {A*(J); In<^J^(In)a for some

n > 1}. However, we show in (7.4) that, for general ideals I in Noetherian

rings, E(I) may be a proper subset of this intersection.

(2.5.7) shows that U(I) includes the asymptotic and essential prime

divisors of 7, and (2.5.1)-(2.5.5) show that ^-essential prime divisors have

the same nice properties these other prime divisors have in regard to

passing to certain related rings. This is important, since it will be shown

in (7.4) that U(I) may properly contain A*(I) U E{I).

(2.6) is a corollary of (2.5.7).

(2.6) COROLLARY. If bu , bd are a u-essential sequence over an ideal

I in a Noetherian ring R, then bl9 -,bd are an asymptotic sequence over

I and an essential sequence over I.

Proof. This is clear by (2.5.7) and (2.1.2). q.e.d.

(2.7) Remark. Let I be an ideal in a Noetherian ring R, let M be

a maximal ideal in R containing /, and let N = (M, f)R[X] be a maximal

ideal in R[X]. It may be assumed that / is a monic polynomial. Then

Ne U((lf)R[X]) if and only if M e U(I).

Proof Since R[f] s R[X), it follows from (2.5.5) that Me U(I) if and

only if (M,f)R[f] e U((I, f)R[f]). Now R[X] is integral over R[f], since /

is monic, and z e Ass R[X] implies z (Ί R[f] e Ass R[f], Also, N is the only

prime ideal in R[X] that lies over (M, f)R[β. Therefore (M, f)R[f] e

U((lf)R[f}) if and only iΐ Ne U((I,f)R[X]\ by (2.5.4). q.e.d.

The following lemma and its corollaries give some new information

on essential prime divisors. These results will be especially useful in

Section 7 where some examples are given.

(2.8) LEMMA. Let (R, M) be a local ring and let I be an ideal in R.

If all primary components of zero in J?* are contained in 7i?*, then Me

E(I) if and only if I is M-primary.

Proof. If I is M-primary, then M € E(I), by (2.2.2).
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Conversely, assume that MeE(I), let P e A s s R/I, and let P * be a

minimal prime divisor of PR*. Then U (Ass R*) c= P*, by hypothesis, so

IR* + z<^ P * for all 2 e Ass #*. But MeE(I) implies that / # * + z is

MR*-primary for some z e Ass iϊ*, SO P * = MR*, hence P — M. q.e.d.

(2.9) COROLLARY. 1/ (R, M) is a local ring such that Ass R* has ex-

actly one element and if I is an ideal in R, then M e E(I) if and only if

I is M-primary.

Proof. This is clear by (2.8). q.e.d.

(2.10) COROLLARY. Let (R, M) be a local ring such that Ass (RP)* has

exactly one element for all PeSpec R. Then E(I) = {PeSpecίί; P is a

minimal prime divisor of 1} for all ideals I in R.

Proof. This follows readily from (2.2.2) and (2.9), since P e E(I) im-

plies that PP e E(IP). q.e.d.

This section will be closed with the following proposition and its

corollary. The proposition is a slight strengthening of [3, Corollary 2.8]

and our proof below is detailed, as opposed to the sketch offered in [3].

It shows that U(I) = A*(I) in a large class of Noetherian rings.

(2.11) PROPOSITION. Let I be an ideal in a Noetherian ring R and

assume that (RM)* has no imbedded prime divisors of zero for all maximal

ideals M in R that contain I. Then U(I) = A*(I) 3 E(I).

Proof. It was shown in (2.5.7) that A*(I) U E(I) c [/(/), so it suffices

to show that U(I) c: A*(I). For this let P e U(I) and let M be a maxi-

mal ideal in R that contains P. Then PM e U(IM), by (2.5.1), and if PM e

A*(IM), then P € A*(I), by (2.2.4), so it may be assumed that R is local
with maximal ideal M. Then if P* is minimal prime divisor of PR*, then
P* e U(IR*), by (2.5.3), and if P* e A*(IR*), then P e A*(Γ), by (2.2.6), so it

may be assumed that R is complete. Then there exists z e Ass R such

that z c P and P/z e U((I + z)jz), by (2.5.2), and if P\z e A*(I + z)jz\ then

P e A*(J), by (2.2.5) (since z is minimal, by hypothesis), so it may be as-

sumed that R is a complete local domain. Then, by hypothesis, there

exists p e Έ{μ9ΐ) such that p Π R = P, where 9t = ^(B, J). Now 9t is

locally unmixed, by [9, Corollary, p. 61] (since R is unmixed), so p e A*(u&)y

by (2.4). Therefore P = p Γi R e A*(I), by [17, (2.7)]. q.e.d.

(2.12) COROLLARY. If I is an ideal in a Noetherian ring R such that
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I is generated by an essential sequence in R and (RM)* has no imbedded

prime divisors of zero for all maximal ideals M in R containing I, then

A*(I) =

Proof. This is clear by (2.5.8) and (2.11). q.e.d.

Some additional results concerning w-essential prime divisors will be

proved in Section 5. However, their proofs require several new results,

so to keep things pretty much in order of their proofs it was decided to

delay giving these w-essential prime divisor results till the needed results

have been proved.

§3. ίZ-essential sequences over an ideal

In this section we prove several results that show that ^-essential

sequences over an ideal I in a Noetherian ring R behave nicely when

passing to certain related rings. Then it is shown in (3.10) that bu , bd

are a w-essential sequence in R if and only if they are an essential se-

quence in JR.

We begin with (3.1) which is essentially a corollary of (2.11). It shows

that w-essential sequences over I and asymptotic sequences over I are the

same in a large class of Noetherian rings.

(3.1) THEOREM. Let R be a Noetherian ring such that Ass (RM)* has

no imbedded elements for all maximal ideals M in R. Then the following

hold for all ideals I in R.

(3.1.1) U(I) = iί*(I) 2 E(l).

(3.1.2) Elements bί9 , bd in R are a u-essential sequence over I if and

only if they are an asymptotic sequence over I, and this implies bu , bd

are an essential sequence over I.

(3.1.3) If R is local, then uecogd (I) = acogd (I) < ecogd (I).

Proof. (3.1.1) is clear by (2.11), (3.12) follows immediately from (3.1.1),

and (3.1.3) follows directly from (3.12) and (2.2.14) once it is shown that

uecogd (J) is well defined. This is done in (4.1). q.e.d.

In (3.3)-(3.8) we show that ^-essential sequences over / behave nicely

when passing to certain related rings. The following lemma will be use-

ful in proving these results.

(3.2) LEMMA. Let I be an ideal in a Noetherian ring R, let bu , bd
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be nonunits in R, and let B = (bu , bd)R. Then bί9 , bd are a maxi-

mal u-essential sequence over I if and only if they are a u-essential sequence

over I and, for each maximal ideal M in R containing I + B it holds that

MeU(I+ B).

Proof. This follows readily from the definition, (2.1.2). q.e.d.

(3.3) is concerned with u-essential sequences over J and over Is.

(3.3) THEOREM. Let I be an ideal in a Noetherian ring R and let

1>D J bd be nonunits in i?. Then the following hold:

(3.3.1) If bu - , bd are a u-essential sequence over I and S is a multi-

plicatively closed set in R such that (I, bu , bd) Rs Φ RS9 then the images

of bί9 , bd in Rs are a u-essential sequence over Is. The converse holds

if Ps Φ Rs for all PeU {U((I, bl9 , bt)R); ί = 0,1, - , d - 1}.

(3.3.2) If b19 '- ,bd are a maximal u-essential sequence over I, then

for each maximal ideal M in R that contains (I, bί9 , bd)R it holds that

the images in RM of bu , bd are a maximal u-essential sequence over IM.

The converse holds if the bt are all in the Jacobson radical of R.

Proof (3.3.1) follows immediately from (2.5.1), and the first statement

in (3.3.2) follows from (2.5.1) and (3.2). For the last statement in (3.3.2)

it will first be shown that bl9 -',bd are a u-essential sequence over J.

For this, suppose they are not, so there exists i (0 < i < d) such that

bi+1ePe U((I, bί9 , b^R). Let M be a maximal ideal in R containing

P. Then the Jacobson radical hypothesis implies that (J, bu , bd)R c: M,

so the supposition and (2.5.1) imply that the image of bi+ί is in Pse

U((I, bu - , bi)Rs)9 where S = R — M. But this implies that the images

of 6j, , bd in RM are not a w-essential sequence over IM, in contradic-

tion to the hypothesis. Therefore bl9 , bd are a u-essential sequence

over /. Finally, if M is a maximal ideal in R containing (J, b19 , bd)R

and S = R — M, then the hypothesis and (2.5.1) imply that Me

U((I, &!, , bd)R), so bl9 - - , bd are a maximal u-essential sequence over

J, by (3.2). q.e.d.

(3.4) is concerned with u-essential sequences over I and over (J + z)\z

with z € Ass R.

(3.4) THEOREM. Let I be an ideal in a Noetherian ring R and let
bu , bd be nonunits in R. Then the following hold:
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(3.4.1) &i, , bd are a u-essential sequence over I if and only if their

images in Rjz are a u-essential sequence over (I + z)\z for all z e Ass R.

(3.4.2) bu -, bd are a maximal u-essential sequence over I if and only

if their images in R/z are a u-essential sequence over (I + z)\z for all z e

AssR and for all maximal ideals M in R containing (I, bu , bd)R there

exists z e Ass R such that z c M and M\z e U(((I, bu , bd)R + z)\z).

Proof (3.4.1) follows readily from (2.5.2), and (3.4.2) follows from

(2.5.2) and (3.2). q.e.d.

(3.5) is concerned with w-essential sequences over / and over IA with

A a faithfully flat Noetherian i?-algebra.

(3.5) THEOREM. Let R c: A be Noetherian rings such that A is a

faithfully flat R-module, let I be an ideal in R, and let bu , bd be non-

units in R. Then the following hold:

(3.5.1) bl9 - - -, bd are a u-essential sequence over I if and only if they

are a u-essential sequence over IA.

(3.5.2) If R cz A satisfy the Theorem of Transition, then bu , bd are

a maximal u-essential sequence over I if and only if they are a maximal

u-essential sequence over IA.

Proof (3.5.1) follows readily from (2.5.3), and (3.5.2) follows from (2.5.3)

and (3.2). q.e.d.

(3.6) is concerned with u-essential sequences over I and over IB with

B a finite integral extension ring.

(3.6) THEOREM. Let B be a finite integral extension ring of a Noe-

therian ring R, let I be an ideal in R, and let bu , bd be nonunits in R.

Then the following hold:

(3.6.1) If bu - - , bd are a u-essential sequence over IB, then they are

a u-essential sequence over I.

(3.6.2) If ze Ass B implies z Π Re Ass R, then bu - ,bd are a u-

essential sequence over I if and only if they are a u-essential sequence over

IB.

(3.6.3) If z e Ass B implies z (Ί Re Ass R, then bu ,bd are a maxi-

mal u-essential sequence over I if and only if they are a u-essential sequence

over IB and for each maximal ideal M in R containing (I, bl9 , bd)R

there exists a maximal ideal N in B such that N Π R = M and N e
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Proof. (3.6.1) and (3.6.2) follow readily from (2.5.4), and (3.6.3) follows

from (2.5.4) and (3.2). q.e.d.

(3.7) is concerned with w-essential sequences over / and over IR[X].

(3.7) THEOREM. Let I be an ideal in a Noetherian ring R and let

bu - , bd be nonunits in R. Then the following hold:

(3.7.1) The following are equivalent:

(a) bly , bd are a u-essentίal sequence over I.

(b) bl9 , bu X, bi + ί, , bd are a u-essentίal sequence over IR[X] for

some ί = 0, 1, , d.

(c) (b) holds for every ί = 0,1, , d.

(3.7.2) The following are equivalent:

(a) bu , bd are a maximal u-essentίal sequence over I.

(b) bu , bt, X, bi+l9 - , bd are a maximal u-essentίal sequence over

IR[X] for some ί = 0,1, , d.

(c) (b) holds for every i — 0, 1, , d.

Proof. (3.7.1) For j = 0,1, • - -£, £/((/, bu -,b3)R[X]) = {PR[X]; Pe

U((I, bu , bj)R)}, by (2.5.3) (and since, for an ideal J in R, the prime

divisors of JR[X] are the PR[X] with P a prime divisor of J). Also, it

is clear that X is not in any prime divisor of (I, bu , b{)R[X], and, for

k = 0,1, , d - i, C7((J, 61? , bίy X, bt+1, .,btΎk)R[X]) = {(P, Z)i?[X];

PeU((I, &!...., 6i+fc)i?)}, by (2.5.5). Therefore it follows that (3.7.1) (a)-(c)

are equivalent.

(3.7.2) follows immediately from (3.7.1) and (3.2), since the maximal

ideals in R[X] containing (I, X)R[X] are the ideals (Λf, X)#[X] with M a

maximal ideal in R containing /. q.e.d.

(3.8) is concerned with ^-essential sequences over projectively equiva-

lent ideals. Remark (3.9) below is required for its proof.

(3.8) THEOREM. Let I and J be ideals in a Noetherian ring R such

that (In)a = {Jm)a for some n > 1 and m > 1 and let bu , bd be nonunits

in R. Then the following hold:

(3.8.1) bu , bd are a u-essentίal sequence over I if and only if they

are a u-essentίal sequence over J.

(3.8.2) bu , bd are a maximal u-essential sequence over I if and only

if they are a maximal u-essential sequence over J.
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Proof. (3.8.1) Note first that for each, i = 0, 1, , d we have ((/, bu

•' , b t Y R ) a = (((I»)a,bΐ,bΐ, - . . , 6 ? ) 2 2 ) β , s o H = ( I , b 1 9 . . . , b t ) R a n d K =

((/w)α, ft?,---, 6?)fl are projectively equivalent. Therefore U(H) = C7(JBΓ),

by (2.5.6), so &<+1 e U U(H) if and only if 6ί + 1g U [/(if) if and only if

6?+i £ U U(K). Therefore it follows that 61? , bd are a w-essential se-

quence over I if and only if &?,•••, &2 are a w-essential sequence over

(Zn)α. And, similarly, bu , bd are a iz-essential sequence over J if and

only if bψ, , &™ are α ̂ /-essential sequence over (Jm)a> Therefore 61? , bd

are a w-essential sequence over I if and only if b\, , bn

d are a u-essential

sequence over (In)a if and only if u, b\, , bn

d are an essential sequence

in 0t = @(Ry (In)a), by (3.9), and this holds if and only if u, &Γ, , b^ are

an essential sequence in St, by (2.2.8). Now 0t = ^(Λ, (Jm)a), by hypothesis,

so this holds if and only if &Γ, , 6? are a ^-essential sequence over (J m ) α ,

by (3.9), if and only if &i, , fed are a w-essential sequence over J, as

noted above. Therefore (3.8.1) holds.

(3.8.2) follows immediately from (3.8.1) and (3.2). q.e.d.

(3.9) Remark. [21]. If I is an ideal in a Noetherian ring R and

όj, , bd are nonunits in R, then ό1? , bd are a ^-essential sequence

over I if and only if u, bly , 6rf are an essential sequence in 0t(R, I).

In (3.10) we show that w-essential sequences and essential sequences

are the same (cf. [3] concluding Remark 3).

(3.10) PROPOSITION. Let bί9 -- ,bd be nonunits in a Noetherian ring

R. Then bu , bd are a u-essentίal sequence in R if and only if they are

an essential sequence in R.

Proof. It follows immediately from (2.6) (applied to I = (0)) that a

zz-essential sequence in R is an essential sequence.

The converse is immediate from (2.5.8) and (2.1.2). q.e.d,

Because of (3.10) we will not henceforth talk about w-essential se-

quences in R. However, it is shown in (7.1) and its preceding comment

that w-essential sequences over I are different from essential sequences

over I, so it is necessary to use this terminology.

This section will be closed with the following remark which gives

some additional basic properties of w-essential sequences over /.

(3.11) Remark. Let I be an ideal in a Noetherian ring R and let

bu ' - ,bd be nonunits in R. Then the following hold:
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(3.11.1) The following statements are equivalent:

(a) bl9 , bd are a w-essential sequence over I; (b) bΐ\ , bn

d

d are a

w-essential sequence over / for some positive integers nt; (c) (b) holds for

all positive integers nit

(3.11.2) The following statements are equivalent:

(a) bu , bd are a u-essential sequence over /; (b) There exists an

ί (0 < ί < d) such that bί9 , bt are a w-essential sequence over / and

&<+i> •••>&<£ are a ^-essential sequence over (J, bl9 , 6J22; (c) (b) holds

for all i (ί = 0,1, , d - 1).

Proof. (3.11.1) &!, , bd are a w-essential sequence over /if and only

if u,bl9 , 6d are an essential sequence in 9t = ^(i?, /), by (3.9), if and

only if u, bΐ\ --,bd

d are an essential sequence in 3t> by [19,(2.11.1)], if

and only if δf1, , bd

d are a w-essential sequence over I, by (3.9), so

(3.11.1) holds.

(3.11.2) is clear by the definition, (2.1.2). q.e.d.

§ 4. On the {[/-essential cograde of an ideal

In this section we show that uecogd (/) is unambiguously defined for

ideals I in a local ring R, we give one characterization of this cograde,

and we then show that it behaves nicely when passing to certain ideals

related to I.

We begin by showing uecogd (I) is well defined. In (4.1), £(J) denotes

the analytic spread of the ideal J.

(4.1) THEOREM. If I is an ideal in a local ring R, then any two maxi-

mal u-essentίal sequences over I have the same length, so uecogd (/) is un-

ambiguously defined. Moreover, uecogd (/) = min {depth z — β({IR* + z)/z);

z e Ass £*}.

Proof. Let bu , bd be a maximal iz-essential sequence over I. Then

by (3.5.2) and (3.4.2) their images in R*jz are a w-essential sequence over

(ZR* + z)\z for all z e Ass iϊ* and for some such z their images are a

maximal w-essential sequence over (Zβ* + z)/z. Therefore their images are

an asymptotic sequence over (Zβ* + z)\z for all z e Ass J?* and for some

such z their images are maximal asymptotic sequence over (IR* + z)/z,

by (3.1.2). Now, for each zeAss i ϊ* it holds that acogd ((IR* + z)\z =

depths - £((IR* + z)/z)9 by (2.2.14), so it follows that d < depths - £((IR* +

z)\z) for all z e Ass R* and equality holds for some such z, so d =
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min {depth z - £((IR* + *)/*); z e Ass i?*}. q.e.d.

(4.2) COROLLARY. Let I be an ideal in a local ring (R, M) and let

Sf = St(R*, 7i?*). Then uecogd (/) = min {height (MR*/*, ύ)Sf\z* z e Ass # *

and z* = zR*[t, u] Π &>} - 1.

Proof. By definition, £((IR* + z)\z) = depth (MR*/*, u)ZΓ, where JΓ -

&(R*/z, (IR* + *)/*), so T ^ 5̂ /2;*, by [22, Lemma 1.1]. Also, each ring

<9*lz* is locally quasi-unmixed, so (^lz^)^/2* satisfies the first chain condi-

tion for prime ideals where Jί is the maximal homogeneous ideal in

Sf. Therefore, by [15, (3.7)], depth (MR*\z, u)Sflz* = altitude (<¥lz*)Mz* -

height (MR*/z, u)&Ίz*. Further, altitude i&Ίz*)^,* = depth z + 1, by [15,

(2.2.4)]. Therefore by (4.1) it follows that uecogd (I) = min {depth z -

£((IR* + z)/z); z e Assi?*} = min {depth 2 - (depths + 1) + height (MR*/*, u)

• ^/z* z e Ass i?*} = min {height (MR*/*, u)y\z* z e Ass J?*} - 1. q.e.d.

(4.3) shows that uecogd (I) behaves nicely when passing to certain

related rings and ideals.

(4.3) THEOREM. Let I be an ideal in a local ring (R, M). Then the

following hold:

(4.3.1) uecogd (I) = min {uecogd ((I + *)/*); z e Ass R}.

(4.3.2) If A is a faithfully flat Noetherίan extension ring of R, then

uecogd (I) < uecogd (IAN) for all prime ideals N in A lying over M and

equality holds if height N = height M.

(4.3.3) If B is a finite integral extension ring of R such that z e Ass B

implies z Γ) R € Ass R, then uecogd (I) < uecogd (IBN) for all maximal ideals
N in B and equality holds for some such N.

(4.3.4) If J is projectively equivalent to I then uecogd (J) = uecogd (I).

Proof. These statements follow immediately from, respectively, (3.4.2),
(3.5) and (3.3.1), (3.6) and (3.3.1), and (3.8.2). q.e.d.

§5. Preliminaries for bounds on uecogd (I)

In this section we prove three theorems, and several corollaries of
one of them, that are used in Section 6 to establish certain bounds on
uecogd (I).

We begin with the w-essential analogue of [6, (3.2)], which gives a
nice containment relation between ideals in A*(2) and in A((I> bu , bd)R),
where bly , bd are an asymptotic sequence over I.
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(5.1) THEOREM. Let I be an ideal in a Noetherίan ring R, let P e U(I),

let bu-' ,bd be a u-essentίal sequence over I, and let N be a minimal

prime divisor of (P, b19 -9bd)R. Then Ne £/((/, bl9 -9bd)R).

Proof. By (2.5.1) PN e U(IN) and if NN e U((I, bu , bd)RN\ then

N e U((I, bu - , bd)R). Also, the images of bl9 , bd in RN are a in-

essential sequence over 7, by (3.3.1), so it may be assumed that R is local

with maximal ideal N. Then by (2.5.3) if P * is a minimal prime divisor

of Pi?*, then P * e U(IR*) and if NR* eU((I,b19 - ,bd)R*), then iVe

[/((!, δj, • , bd)R). Also, &!, , bd are a iz-essential sequence over IR*,

by (3.5.1), so it may be assumed that R is complete. By (2.5.2) there ex-

ists zeAssR such that z c P a n d P\z e U((I + z)\z) and if N/z e C/(((7, bl9

• , &Ji? + z)jz)9 then iVe U((I, bί9 -9 bd)R). Also, the images of bu , 6̂

are a u-essential sequence over (I + z)jz, by (3.4.1), so it may be assumed

that R is a complete local domain.

Let m = ^(1?, I) and let p e E(w^) such that p f) R = P. Then

heightp = 1, by (2.4), and u,bu , 6d are an essential sequence in 0t9 by

(3.9). Therefore, if q is a minimal prime divisor of (p, bu , 6d)«^, then

height q = d + 1, by (2.2.9) and since 0ί is catenary. Also, &*/& = tbu so

g/ — q&[tbu , 26J is a height one prime divisor of u&[tbu , Z6J that

lies over q, by [14, Lemma 2.7]. Therefore, since ^[ί61 ? . . ,^6J==

9t{R9 (I, bl9-"9 bd)R), q' Γ) Re U((I, bl9 , bd)R). Also, ^ Π R = N, since

^ Π 12 - q ΓΊ R 2 (P, 6i, &*,)12. q.e.d.

(5.2) COROLLARY. L ί̂ I 6β απ, ideal in a Noetherian ring R and let

bu - , bd be a u-essentίal sequence over I. Then, for i — 0, 1, , d — 1,

given any P e U((I, bu , 6Ji?) ί/ierβ exists Q e U((I, bu , bi+ί)R) such

that P C Q. Moreover, if R is locally quasί-umnίxed, then Q can be chosen

such that height Q — height P + 1.

Proof. The first statement follows immediately from (5.1), and the last

statement follows from the first chain condition for prime ideals in RQ in

the quasi-unmixed case. q.e.d.

(5.3) is a E(I) analogue of (5.2).

(5.3). COROLLARY. Let bu , bd be an essential sequence in a Noe-

therian ring R, fix ί (0 < i < d)9 let P e E((bl9 , bt)R\ and let N be a

minimal prime divisor of (P, bί+1, , bd)R. Then N e E((bu , bd)R).

Proof. E((bl9 , bj)R) = U((bu • , bj)R) for j = 1, . ., d, by (2.5.8).
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Therefore, if I = (bu , bt)R, then bί + 1, , bd are a zz-essential sequence

over I, so the conclusion follows immediately from (5.1). q.e.d.

(5.3) is definitely a weaker result than (5.1), and it is shown in (7.3)

that the essential sequence over I analog of (5.1) is not true.

(5.4) is the ^-essential analogue of the following result: If P e A*(B),

where B is generated by an asymptotic sequence, then P e A*(I) for all

ideals I in R such that B c= Rad I c P.

(5.4) THEOREM. Let B c; P be ideals in a Noetherίan ring R such

that B is generated by an essential sequence in R and P € U(B). Then
P e U(I) for all ideals I in R such that B g Rad I ς: P.

Proof. By (3.11.1) and the hypothesis that B c; Rad I it may be as-

sumed that B c: J. Then by (2.5.1) and (2.2.10) it may be assumed that

R is local with maximal ideal P, and then by (2.5.3) and (2.2.12) it may

be assumed that R is a complete local ring. Finally, by (2.5.2) and (2.2.11)

it may be assumed that R is a complete local domain. Then P e U(B)

implies P is a minimal prime divisor of B, by (2.4), so B is P-primary.

Thus I is P-primary, so P e U(I\ by (2.3.2). q.e.d.

(5.5) contains several remarks that will be used in the proof of (5.6)

and (6.7)-(6.9).

(5.5) Remark. The following hold for an ideal / in a local ring R:

(5.5.1) If bu->-,bd in R are a ^-essential sequence over 1, then

(5.5.2) If 63, , bd are nonunits in R whose images modulo In are an

iϊ/J^-sequence for all large n, then £(((1, bu , bd)R)l(bu , bd)R) - S(I).

(5.5.3) For all large k it holds that grade R/In = grade R/P for all

n > k and if bu - , bd are nonunits in R whose images in R/P are an

i?/Ifc-sequence, then their images in Rjln are an iϊ/J^-sequence for all

n > k.

(5.5.4) If J is an ideal in R, then £(I) > £((I +

Proof. For (5.5.1), bl9 , bd are an asymptotic sequence over 7, by

(2.6), so the conclusion is given by [6, (3.1)].

(5.5.2) and (5.5.3) are given by [6, (7.1) and (7.3)].

For (5.5.4) let 3t = &(R, I) and let ¥ = 3t(R\J, (I + J/)J), so £f = 0l\J*

where J * = JR[t, u] Π &, by [22, Lemma 1.1]. Let p be a minimal prime



60 DANIEL KATZ AND LOUIS J. RATLIFF, JR.

divisor of (Af/J, u)S? such that depth p == £((I + J)/J) and let P be the

pre-image of p in ^ . Then (Λf, u)^ c P, so £{I) = depth (M, u)St >

depth P = depth p = £((I + J)IJ). q.e.d.

(5.6) is the final result in this section. Its proof is similar to the

proof of [6, (7.2)], but there are enough differences that it was decided to

include the details here.

(5.6) THEOREM. Let I be an ideal contained in the Jacobson radical

of a locally unmixed Noetherian ring R and assume that bu , bd are

elements in R whose images in R\In are an R\In-sequence for all large n.

Then bu , bd are a u-essential sequence over I.

Proof. The hypothesis on 6X implies that bλ & U A*(J) = U {P e Speci?;

P is a prime divisor of In for all large n}. Therefore, since U(I) c: A*(I),

by (2.3.3), it follows that bx is a w-essential sequence over /.

We now inductively assume that bl9 ,bd_1 are a w-essential se-

quence over I. Then it is shown in [21] that bly , bd_γ are an essential

sequence in R, so height (bu , bd_ϊ)R = d — 1, by (2.2.9). We must show

that δ ^ U C7((I, 6i, , &d_i)J2), so suppose, on the contrary, that bdeP

for some P e U((I, bu , 6d_i)ίϊ). Then it may be assumed that R is local

with maximal ideal P, by (2.5.1). Now U(J) = A*(J) for all ideals J in R,

by (3.1.1), so P e A*((I, bu , b^R), and so heightP = £((I, bl9 - , 6^)12)

= £{T) + d — 1, by [5, Theorem 3] and (5.5.1). Let ' denote residue class

modulo (&„ -,&„_,)& Then 4(1') = £(I) = heightP - d + 1, by (5.5.2).

Also, height (6j, , bd_1)R = d — 1, as already noted, so by the first chain

condition for prime ideals in R (since R is unmixed) it follows that

height P ' = height P-d + 1. Therefore £(Γ) = height P'. Now every mini-

mal prime divisor of (bly , bd_^)R has height d — 1, so i?r is quasi-unmixed,

by [11, Corollary 2.2]. Therefore P ' € A*(Γ) c A*(J'), by [5, Theorem 3]

and (2.2.1) and so P e {Q e Speciϊ; Q is a prime divisor of In + (6^ , bd_ϊ)R

for all large n}. However, bd e P, and this contradicts the hypothesis on

bu * •> &d> so &!,•••, &d are a α-essential sequence over 7. q.e.d.

§6. Some bounds for uecogd (/)

In this section we show that most of the results in [6] concerning

acogd (I) have a valid uecogd (/) analogue. We begin with the following

remark.
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(6.1) Remark, If R is a local ring, then the following hold:

(6.1.1) If i?* has no imbedded prime divisors of zero, then uecogd(/) =

acogd (I) for all ideals I in R, by (3.1.3). Therefore in this case all the

results in [6] concerning acogd (I) hold for uecogd (I).

(6.1.2) It follows immediately from (2.6) that, in general, uecogd (/) <

acogd (I) and uecogd (I) < ecogd (I). We show in (7.4) that both inequali-

ties can hold.

Even when the hypothesis in (6.1.1) is not satisfied, most of the bounds

on acogd (I) in [6] have a valid uecogd (I) analogue, as we now show.

The first of these bounds is the analogue of [6, (3.5)]: acogd (/) <

min {little depth P; P e A*(I)}. Here, little depth P is the length of a

shortest maximal chain of prime ideals in R/P.

(6.2) THEOREM. If I is an ideal in a local ring (R, M), then

uecogd (I) < min {little depth P; P e U(I)}. Therefore, if A is a faithfully

fiat local extension ring of R, then uecogd (I) < min {little depth P*; P* e

Proof The proof is essentially the same as that given to prove the

asymptotic cograde case in [6, (3.5)], but use (5.1) in place of [6, (3.2)].

q.e.d.

(6.3) Remark. Equality need not hold in (6.2) even when R is a com-

plete local domain and I is a height one prime ideal such that U(I) = {/}.

Proof. [6, (3.6)] shows that equality need not hold in this case for

asymptotic cograde. Therefore the conclusion follows, since U(I) = A*(I)

and uecogd (/) = acogd (7) when R is a complete local domain, by (3.1).

q.e.d.

The next bound on acogd (I) in [6] depends on the fact that if bu , bg

are an asymptotic sequence over I, then their images in R/I are an as-

ymptotic sequence. The w-essential sequence over I version of this does

not hold, as noted in [7, (7.1)]. Therefore the uecogd (I) analogue of [6,

(4.5)]: acogd (I) < agd(M//); does not hold. In fact, if I is an ideal in

R such that M e Ass R/I, g U(I\ then uecogd (/) > 1 > 0 = egd (Λf/I).

Therefore, since uecogd (/) = acogd (I) when R* has no imbedded prime

divisors of zero, (6.4) is the best possible uecogd (I) analogue of [6, (4.5)].

(6.4) THEOREM. If I is an ideal in a local ring R, then uecogd (I) <

agd (M/i).
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Proof. This follows immediately from [6, (4.5)] and (6.1.2). q.e.d.

(6.5) is the uecogd(7) version of [6, (6.1)]: acogd(I) < agd(M) - agd (7).

(6.5) THEOREM. Let I be an ideal in a local ring (R, M) and let

xu , xh be an essential sequence in I. Then there exists a maximal u-

essentίal sequence over 7, say bu , bd, such that xu , xh, bu , bd are

an essential sequence in R. In particular, uecogd (7) < egd (M) — egd (7).

Proof. The proof is the same as that given to prove [6, (6.1)], but

use (5.5) to show that M β U(I) implies M £ U((xu , xh)R). q.e.d.

(6.6) is the uecogd (7) analogue of [6, (6.2)].

(6.6) THEOREM. The following statements are equivalent for an ideal

I in a local ring (R, M):

(6.6.1) uecogd (/) = egd (M) - egd (7).

(6.6.2) There exists z e Ass iϊ* such that £((IR* + z)\z) = height (IR*

+ z)\z = egd (I) and uecogd (I) = depth z — height (IK* + z)jz.

(6.6.3) The equalities in (6.6.2) hold for every z e Ass R* such that

depth z = egd (M).

Proof The proof is the same as that given to prove [6, (6.2]), except

one must substitute for the asymptotic-references the analogous essential-

references, q.e.d.

The final bounds on acogd (I) in [6] are lower bounds. To prove the

uecogd (J) version of these we will use (5.5) and (5.6).

(6.7) is the uecogd (J) version of [6, (7.4)]: If (R, M) is a quasi-unmixed

local ring, then acogd (I) > grade M/In for all large n.

(6.7) THEOREM. If I is an ideal in an unmixed local ring (R, M),

then uecogd (/) > grade (M/In) for all large n.

Proof This is clear by (5.6) and (5.5.3). q.e.d.

(6.8) Remark. If / is an ideal in an unmixed local ring (R, M), then

grade M\In < uecogd (/) < agd (M/In) for all large n.

Proof. It follows from [18, (2.13)] that agd (M/In) = agd (M/I) for all

n > 1, so this follows immediately from (6.4) and (6.7). q.e.d.

The final result in this section, (6.9), is the uecogd (/) analogue of

[6, (7.6)]: acogd (J) > agd(M) - i(I).
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(6.9) THEOREM. If I is an ideal in a local ring (R, M), then uecogd (I)

egd (M) -

Proof. By (4.1) let z e Ass JR* such that uecogd (7) = height MR*/z -

£((IR* + z)/z. Then height MR*/z > egd (M), by (2.2.13), and £((IR* + z)z)

< £(ΐ), by (5.5.4), so the conclusion follows. q.e.d.

§7. Some examples

In this final section we give four examples that show some of the

differences between essential sequences over I and w-essential sequences

over I.

(7.1) shows that a permutation of an essential sequence over an ideal

J i n a local ring need not be an essential sequence over I, even though

this holds for zz-essential sequences over J, as is shown in [21].

(7.1) EXAMPLE. There exists a local domain R such that R has an

ideal I and elements bu b2 such that bu b2 are an essential sequence over

I and 62, b1 are not.

Proof Let R be a complete regular local ring of altitude three and

let α, 6, c be a regular system of parameters in R. Let p = (b — c)R,

P = (a, c)R, and ί - p Π P , so I = p(P:p) = pP = (ab - ac, be - c2)R.
Then E(I) = {p, P}, by (2.10), and 6, a are an essential sequence over I

(since b is prime to I and E((I, b)R) - E((ac, c\ b)R) = {(6, c)B}, by (2.10)),

but a e P, so a, b are not an essential sequence over I. Thus let bί = b

and b2 = a. q.e.d.

(7.2) shows that an essential sequence over an ideal I in a local do-

main R need not be an essential sequence in R, but a ^-essential sequence

over I is an essential sequence in J2, as is shown in [21].

In the proof of (7.2) (and also in (7.4)) we again use ί{ΐ) to denote

the analytic spread of an ideal I.

(7.2) EXAMPLE. There exists a local domain R such that R has an

ideal I and elements bu b2 such that bu b2 are an essential sequence over I

and bu b2 are not an essential sequence in R.

Proof Let (L, M — (α, b)L) be a complete regular local ring of altitude

two, let A = L[ta, tb], where t is an indeterminate, and let R — AiMitaitb)A,

so R is a local domain of altitude three. It will first be shown that MnR

is MR-primary for n > 1.
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For this, let 9t = 0t(L, M) = L[ta, tb, u] = A[u], with u = \\t. Then

0l\u0l = A\MA = ^ ( L , M), the form ring of L with respect to M, by [22,

Theorem 2.1], and ^ ( L , M) is an altitude two integral domain, since L is

regular, so u9t and MA are height one depth two prime ideals. Also,

un0t Π A = MnA for all n > 1, so MπA is integrally closed for all rc > 1,

since w71^ is (since uέ% is prime). Therefore iV = (M, to, Z&)i? is not a prime

divisor of MnR for all τι > 1, by [5, Theorem 3] (since ί(MnR) = £(MR)

and £(MR) < 2 (since M is generated by two elements) and since R is

quasi-unmixed (since L is)). Also, if P e Spec R and P Φ N, then J?P is

regular, since Λ[l/ί] = Sl(L, M) is locally regular, by [23, Theorem 2], and

A[t] = L[t] is locally regular. Therefore, if height P = 2, then P is not a

prime divisor of MnR for all AI > 1 (since MnRP is principal). Therefore

A*(Mi?) = {Mi?}, so E(MB) = {MR}, by (2.2.1).

Therefore it follows that R/MR ~ (L/M)[X, F W > , and R*/MR* s

(22/MK)*, so MR* is prime Also, it was just shown that Mni? is M#-

primary for all n > 1, so it follows from flatness that M nB* is MR*-primary

for all n > 1, so A*(MΛ*) = {MR*}, hence E(MR*) = {MR*}, by (2.2.1).

Thus it readily follows from (2.2.3) that every prime divisor of zero in j?*

is contained in MR*, so this also holds for (M, ta)R*, and so E((M, ta)R) —

{(M, ta)R), by (2.8). Therefore ta, tb are an essential sequence over MR,

but (ta, tb)R = (tL[t\ Π A)R is a height one prime ideal, so ta, tb cannot

be an essential sequence in R, so let bx = ta and b2 = tb. q.e.d.

It was shown in (5.1) that if b £ U U(I) and P e U(I), then there ex-

ists Q 6 U((I, b)R) such that P c Q. (7.3) shows that this does not hold

for

(7.3) EXAMPLE. There exists a local domain R such that R has an

ideal I, an element b, and some P e E(I) such that b is an essential se-

quence over I and no prime ideal in E((I, b)R) contains P.

Proof. Let R, I, P, and b be as in the proof of (7.1), so E((I, b)R) =

{(b, c)R} and P £ (b, c)R. q.e.d.

It was shown in (2.5.7) that A*(I) U E(I) c U(I). Our final example,

(7.4), shows that this containment may be proper. It also shows that

uecogd (I) < acogd (/) and uecogd (I) < ecogd (I) can hold.

(7.4) EXAMPLE. There exists a local ring R such that R has an ideal

I such that Ά*(I) U E(I) C U(I).
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Proof. Let (L, N = (α, b, c, d)L) be a complete regular local ring of

altitude four, let p = aL, B = (a\ b)L, K = p Π B, and J = (c2, cd)L. Let

P - (α, 6)L so Ass L/K = {p, P}. Let R - L/K, M = JV/lζ I = (J + £)/£,

2 = p/K, and n; = P\K. Then i? is a local ring of altitude three, w is an

imbedded prime divisor of zero, and Rjw = L/P is a complete regular local

ring of altitude two such that c', d', the P-residue classes of c, d, are a

regular system of parameters. Now (J + w)/w is generated by c/2, c'd', so

£((I + w)jw) = 2. Therefore M/w e A*((I + w)/w) = U((I + w)/w\ by [5,

Theorem 3] and (3.1.1), and so M e U(I), by (2.5.2). Also, R a d ( J + w)\w

= c'(R/w) is a principal ideal, so M/w £ E((I + w)lw\ by (2.9). And

Rad (/ + z)\z = (a, c){Rjz\ so altitude R\z = 3 implies M\z & E((I + z)/z,

by (2.9). Therefore M € £(J), by (2.2.5). Finally, M\z & A*((I + z)/z, by

[5, Theorem 3], since £((I + z)/z) < 2 < altitude R\z and iϊ/,2 is quasi-

unmixed, so M & A*(I), by (2.2.5). q.e.d.
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