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The topics treated in this paper have their origins in the area of algebraic 
systems theory. However, the paper itself should be classified as pure com- 
mutative algebra and we shall present it as such in the body of the text. 
Still, it is appropriate to give a brief paragraph of motivation. 

If a physical system is governed by a pair (F, G) of matrices, then the 
stability of the system can be determined by examining the eigenvalues of 
the matrix F. If the system is unstable, a “feedback” matrix K can 
sometimes be employed in such a way that the eigenvalues of the matrix 
F+ GK measure the stability of the (modified) system (F+ GK, G). In this 
manner, an unstable system can be rendered stable. The pole assignability 
problem over commutative rings is one method of attacking the problem of 
finding such matrices K. 

The paper is divided into four sections. Section 1 is given over almost 
entirely to defining the properties in which we shall be interested. It con- 
cludes with a theorem about residuating and lifting the properties. Sec- 
tion 2 is concerned with the preservation of the properties under 
polynomial ring and power series ring formation. Section 3 is concerned 
with “feedback cyclization,” a strong form of pole assignability. Section 4 is 
concerned with pole assignability over Priifer domains. 

A complete elaboration of our results must await the introduction of the 
necessary terminology. For now, we mention the following results in 
somewhat vague language. If R is a zero-dimensional ring, then the pole 
assignability problem is solvable in R[X] and in R[ [Xl]. From a ring- 
theoretic standpoint, almost any class of commutative rings contains mem- 
bers for which the feedback cyclization problem is solvable. On the other 
hand, if R is a ring with 1 in its stable range, then the feedback cyclization 
problem is solvable in R if and only if a certain nice matricial property 
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holds in R. In Priifer domains, the pole assignability problem can be solved 
if “simultaneous bases” for projective submodules of free modules can be 
found. This appears to open up a problem for Priifer domains similar to 
the old one for BCzout domains: Is every Btzout domain an elementary 
divisor domain? 

1. INTRODUCTION 

At this point it is necessary to introduce a large amount of notation and 
terminology. We proceed to do just that, but some readers might wish to 
skip to the results themselves, returning to this section when necessary. 

Let R be a commutative ring with identity. By a system over R we shall 
mean a pair (F, G) of matrices over R where F is n x n and G is n x m, n, m 
positive integers. The system is reachable if and only if the R-module 
generated by the columns of the matrix [G, FG,..., F”- ‘G] is R”. Thus, 
(F, G) is reachable if and only if the map from R”” to R” determined by the 
matrix [G, FG,..., F’- ‘G] is surjective. The system (F, G) is called pole 
assignable if and only if given r, ,..., rn E R, there exists a “feedback” matrix 
K over R such that the characteristic polynomial of the matrix F+ GK is 
(X-r,)...(X-r,). It is a fact (see Bumby et al., [6]) that if the system 
(F, G) is pole assignable, it is reachable. In some sense, this paper is 
interested in determining those rings for which the converse is true. The 
system (F, G) is coefficient assignable if and only if given r,,, r, ,..., r,, ~ I E R, 
there exists a feedback matrix K such that the characteristic polynomial of 
the matrix F+GKis r,+r,X+ ... +r,,-,X’-‘+X”. If (F, G) is a system 
over R, we say that “we can feedback to a cyclic vector” if there 
exists a vector UE R” and a feedback matrix K such that Gu is a cyclic 
vector for the matrix F+ GK--that is, the matrix [Gu, (F+ GK) 
Gu,..., (F+ GK)“- ’ Gu] has unit determinant. 

It is not hard to see that if the system (F, G) feeds back to a cyclic vec- 
tor, then (F, G) is coefficient assignable (e.g., see Brewer, Bunce, and Van 
Vleck [ 11). It is evident that if (F, G) is coefficient assignable, it is pole 
assignable. 

We say that a ring R has the PA-property if each reachable system over 
R is pole assignable. We say that R has the CA-property if each reachable 
system over R is coefficient assignable. We say that R has the FC-property 
if each reachable system over R feeds back to a cyclic vector. These topics 
are defined and discussed in the paper [6] and that paper should be on 
hand when reading any paper in this area. There have been several 
recently, among them Brewer, Naudt, and Naudt [4], Tannenbaum [21], 
Brewer, Heinzer, and Lantz [3], Naude and Naude [20], and Hautus and 
Sontag [ 151. 
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We need to define only a few more notions. As before, let R be a com- 
mutative ring. We shall say that an n x m matrix G over R is good if there 
exists an n x n matrix F over R such that the system (F, G) is reachable. It 
is clear that a good matrix has unit content-that is, the ideal of R 
generated by the entries of a good matrix is R. It is proved in [4] that if D 
is a Bezout domain, then D has the PA-property if and only if given a good 
n x m matrix G over D, there exists a vector UE D” such that Gu is 
unimodular; that is, the content of Gu is D. We abstract this notion. If R is 
a commutative ring, then we say that R has the GCU-property if and only if 
whenever G is a good n x m matrix over R, there exists a vector u E R” such 
that Gu is unimodular. 

In [ 151, it is shown that any Dedekind domain has the PA-property. 
The proof of this lovely result involves two steps: First showing that a 
Dedekind domain has what the authors call “property (t)“; second, show- 
ing that property (t) implies the PA-property for any ring. Set in our 
framework, property (t) says the following. If G is a matrix having unit 
content, then there exists a matrix V such that the matrix GV is a 
(*)-matrix in the notation of Gilmer and Heitmann [ 12]-that is, the con- 
tent of GV is the whole ring and all 2 x 2 minors of GV are zero. If a ring R 
has property (t), we shall say that R has the UCS-property. (We are doing 
this for consistency’s sake only. The property (t) notation is line and we do 
not mean to imply otherwise.) 

Finally, we introduce one further bit of terminology. It is merely a strong 
form of the UCS-property. If a ring is such that given an n x m matrix G of 
unit content, there exists a vector UE R” such that Gu is unimodular, then 
we shall say that R has the UCU-property. As noted above, if R has 
the UCU-property, then R has the UCS-property (and hence the 
PA-property). It is also clear that if R has the UCU-property, then R has 
the GCU-property. 

We conclude this introductory section with a basic theorem which says 
that these properties respect homomorphic images and that some of them 
lift modulo the Jacobson radical, 

THEOREM 1. Let R he a commutative ring with I an ideal of R and let J 
denote the Jacobson radical of R. 

(1) If R has the PA- (resp. CA-, FC-, GCU-, UC.5, UCU-), property, 
then R/I has the PA- (resp. CA-, FC-, GCU-, UCS-, UCU-) property. 

(2) If R/J has the GCU- (resp. UCU-, FC-) property, then R has the 
GCU- (resp. UCU-, FC-) property. 

Proof: (1) We will prove only that if R has the PA-property, so does 
R/I, the proofs of the remaining assertions being analogous. Thus, let 
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- - 
(F, G) be a reachable system over R/Z and let ii,..., r, E R/Z. (Here, of 
course, - denotes reduction of elements or matrix entries modulo Z.) Since - -- 
the (R/Z)-module generated by the columns of the matrix [G, FG,..., 
F-‘G] is (R/Z)“, there exist column vectors C,,..., C,, each of which 
belongs to ZR”, such that the system (F, [G, C, ,..., C,]) is reachable over 
R. Because R has the PA-property, there exists an (m +k) x n matrix 
K= [ $1, K, being m x n, K, being k x n, such that the characteristic 
polynomial of F+ [G, C,,..., C,] K is (X-r,)...(X-r,). But then 
F+ [G, Cl,..., 

-- -- 
C,] K = F + [G, O,..., 01 [;;I = F+ GK, has characteristic 

polynomial (X - r, ) . . . (X - Y,) as desired. 

(2) If G is an n x m good matrix over R, then G is good over R/J 
(where - denotes reduction of matrix entries modulo J). Hence, there exists 
a vector U E (R/J)” such that GV is unimodular over R/J. Clearly Gu is 
unimodular over R. 

That the UCU and FC-properties lift is just as easy. 

2. POLYNOMIAL RINGS AND POWER SERIES RINGS 

This section actually divides into two subsections, each dealing with one 
of the topics of the title. 

The principal result of the first part is that if R has (Krull) dimension 
zero, then R[X] has the UC&property. (We conjecture the converse, but 
have been unable to prove it.) 

In a sense, the origin of this entire area is the proof in Morse [ 193 that if 
F is a field, then F[X] has the PA-property. Also, it is shown in [21] that 
F[X, Y] never has the PA-property, independent of the field F. In fact if R 
is any commutative ring, let M be a maximal ideal of R. If R[X, Y] had 
the PA-property, then so would (R/M)[X, Y] by Theorem 1. Conse- 
quently, for any R, R[X, Y] never has the PA-property, and in particular, 
never has the UCU-property. Thus, our Theorem 2, along with its conjec- 
tured converse, would complete the story of the UCU-property in 
polynomial rings. 

Recall from Kaplansky [ 161 that a ring R is called an elementary divisor 
ring if each matrix A over R admits a diagonal reduction-that is, there 
exist invertible matrices P and Q such that PAQ is diagonal. 

THEOREM 2. Let R be a ring of dimension zero. Then the polynomial ring 
R[X] has the UCU-property. 

Proof. Let N be the nilradical of R. Since R is zero-dimensional, N is 
also the Jacobson radical of R. Hence, N[X] is the Jacobson radical of 
R[X]. By Theorem 1, it suffices to prove that R[X]/N[X] 2 (R/N)[X] 
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has the UC&property. Now, R/N is a von Neumann regular ring and so 
we may assume that R itself is. We claim that if R is von Neumann regular, 
then R[X] is an elementary divisor ring. Once this has been justified, the 
result will follow because of a standard argument showing that elementary 
divisor rings have the KU-property. (See [6, p. 1191.) 

Let A be a matrix over R[X]. Set Z= {u E R 1 A admits a diagonal 
reduction over RJX]}, where R, denotes the localization of R at the 
element a, and let Z* be the ideal generated by I. For each maximal ideal M 
of R, R,+,[X] is a PID and so A admits a diagonal reduction over R,[X]. 
It follows easily from this that Z* = R, so there exist elements aie Z and 
r,E R with r,a, + ... + r,a, = 1. Since R is von Neumann regular, we may 
assume that each a, is idempotent. Replacing a,, a,,..., u, by 
a,, (1 -~I)~,,.-, (1 -a,)(1 -u2)...(l -~,-,)a,, respectively, we may 
assume that the u;s are pairwise orthogonal idempotents. Thus, 
R = Ru, @ . 0 Ru, g R,, 0 . . . 0 R,” via a “natural” isomorphism. It 
follows that A admits a diagonal reduction over R[X]. This completes the 
proof of the theorem. 

Remark. We note that if R[X] is an elementary divisor ring, then R is 
von Neumann regular. In fact, in Gilmer and Parker [13] it is shown that 
if R[X] is a Priifer ring, then R is von Neumann regular. Thus, R is a von 
Neumann regular ring if and only if R[X] is an elementary divisor ring. In 
the sequel, we shall look at the analogous question for power series rings. 

Note that if S is a ring with the KU-property, then all projective 
S-modules of constant (finite) rank are free. (See Lemma 8.) In particular, 
it follows from Theorem 2 that if R is zero-dimensional, then constant rank 
projective R[X]-modules are free. Now, as remarked earlier, R[X, Y] does 
not have the PA-property, much less the UCU-property. Nevertheless, if R 
is zero-dimensional, constant rank projective R[X, Y]-modules are free as 
we now prove. 

PROPOSITION 1. Let R be a ring of dimension zero and let X, ,..., X,, be 
indeterminutes. Then projective modules of constant rank over R[X, ,..., X,,] 
are free. 

Proof Let P* be a projective R[X, ,..., X,1-module of constant (finite) 
rank. Then, as is well known, P* is finitely generated and hence extended 
by Brewer and Costa [2, Corollary 23. Write P* z P OR RCX,,..., X,] 
where P is a projective R-module. Since constant rank projectives over R 
are free (McDonald and Waterhouse [ 18]), we need only show that P is of 
constant rank. First observe that P z P*/(X, ,..., X,) P*, as can be seen via 
a standard calculation with tensor products. Let M be a maximal ideal of 
R. Then (IV, X, ,..., X,) = M* is a maximal ideal of R[X, ,..., X,,] and 
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R/ME R[X, ,..., X,,] /M*. Moreover, PIMP z P*/M*P*. Therefore, 
dim.,,(f’/MP) = dimRCx,,...,XnlIM* (P*,lM*P*). Since P* has constant rank, 
it follows that P does also. 

We begin our treatment of power series with a definitive result for some 
of the properties we are interested in. 

THEOREM 3. Let R be a commutative ring and denote by R[ [Xl] the 
power series ring in one variable over R. Then, 

(a) R has the FC-property if and only if R[ [ A’] ] has. 

(b) R has the GCU-property if and only if R[ [X]] has. 

(c) R has the UCU-property if and only if R[ [Xl] has. 

ProoJ If J is the Jacobson radical of R, then J+ (X) is the Jacobson 
radical of R[ [Xl] and R/Jr R[ [X]]/(J+ (X)). The result is now 
immediate from Theorem 1. 

Remark. Let R be a zero-dimensional ring. Since R modulo its Jacob- 
son radical is von Neumann regular, R has the UCU-property. It follows 
from Theorem 3 that R[[X]], like R[X], has the UCU-property. 

It will follow from the results in Section 3 that a zero-dimensional ring R 
has the FC-property. Consequently, Theorem 3 implies that R[ [X]] has 
the FC-property. However, R[X] need not have the FC-property. For 
example, if R is the real field, then R[X] does not have the FC-property 
(see [I] for a proof). 

We conjecture that if R has the UCS-property, then so does R[ [Xl]. So 
far, a proof has eluded us. As for the PA-property, we have little feel. 
However, two ways in which R[ [ X] ] could have the PA-property are: 

If R is an elementary divisor ring, then R has the UCU-property and by 
Theorem 3, so does R[[X]]. Therefore, R[[X]] has the PA-property. In 
particular, if Z is the ring of integers, then Z![ [Xl] has the PA-property, 
fails to have the FC-property, and is not an elementary divisor ring. 
Adjoining additional indeterminates yields such examples of arbitrary 
dimension. 

If R[ [ X] ] is itself an elementary divisor ring, then R[ [ X] ] has the 
PA-property. Indeed, our original interest in power series rings was kindled 
by a desire to use them to give an example of a Bezout ring that failed to 
have the PA-property. As we shall see, if R[ [X]] is a Bezout ring, it must 
be an elementary divisor ring and so our idea was doomed to failure. At 
any rate, in the process an interesting theorem emerged. We proceed to its 
proof by a succession of results. 

LEMMA 1. Zf R[ [ X] ] is a Bbzout ring, then R is von Neumann regular. 
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Proof: For every TE R, (r, X) is a principal regular ideal, hence 
invertible. Therefore, (r, X)’ = (r’, X2). In particular, rX=fi’ + gX* for 
some f, geR[[X]]. If f=a,+a,X+a,X’+ ..., where u,ER, then 
rX = a, r2 + a i r2 + KY2 for some h E R[ [X] 1. Equating corresponding 
coefficients yields r = a, r2, so R is regular. 

Call a ring R Hermire if every matrix over R can be lower triangulated; 
i.e., for every matrix A over R, there exists an invertible matrix P such that 
AP is lower triangular. This is equivalent to the condition that every 1 x 2 
matrix over R can be diagonalized by right multiplication by an invertible 
matrix [ 161. Observe that von Neumann regular rings are Hermite. This 
follows easily from the fact that every nonzero element of a von Neumann 
regular ring is (uniquely) the product of an idempotent with a unit. Also, it 
is clear that Hermite rings are Btzout rings. Our next result shows that the 
converse is true for power series rings. 

PROPOSITION 2. R[ [X] ] is an Hermite ring if and only if it is a Btizout 
ring. 

Proof: As mentioned above, Hermite rings are always Bezout rings. So, 
we assume that R[[X]] is a Bezout ring and show that it is an Hermite 
ring. Suppose [ f g] is a 1 x 2 matrix over R[ [X] ] where f = C fiXi and 
g=Cg;x’. By L emma 1, R is regular. Hence R is Hermite and there exist 
~,,b,,c,,d~~Rsuchthat [fogo][~~~]=[uofo+cogoO]anduodo-b,c, 
is a unit. 

Set R, = n { R/M 1 M is a maximal ideal of R}. Since R is reduced and 
zero-dimensional, R may be viewed as a subring (and hence as an R-sub- 
module) of R,. Consider the following countable system of equations with 
coefficients in R in the unknowns b,b, ,...; d,, d, ,...: 

fib,+.@, +g,do+god,=O, 

f2bo+fib,+fobz+gzdo+g,d,+godz=O, 

f~bo+f,b,+f,b,+fob,+g,do+g,d,+g,d,+god~=O, (*) 

Since R, is a product of fields, (* ) clearly has a solution over R, . R[ [X] ] 
a Btzout ring and R regular imply that R is an No-pure submodule of R, 
by Theorem 1 of [S]. This means that (*) has a solution over R. Thus, 
there exist bi and di in R such that [fg] [;; i] = [aof+ cog 01, where 
b = C;Zo b,X’ and d= X20 d,X’. Moreover, u,d- bc, is a unit in R[ [X]] 
since uodo - b,c, is a unit in R. Therefore, R[ [Xl] is an Hermite ing. 

Following Estes and Ohm [lo], we say that a commutative ring R has 1 
in its stable range if whenever (a,, a,,..., a,) = R for U;E R, there exist 
b 2,..., b, E R such that u, + b,u, + . . . + bnun is a unit. Note that R has 1 in 
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its stable range if and only if for all a,, a2 E R with (a,, a*) = R there exists 
bZE R such that a, + b2u2 is a unit. 

LEMMA 2. Suppose R has 1 in its stable range. Then R[ [ X]] has 1 in its 
stable range. 

ProoJ: Supposef,gE R[[X]] and (f,g)= R[[X]]. Letf, (resp. g,) be 
the constant term off (resp. g). Then ( fO, go) = R and so there exists b E R 
such that fO + bg, is a unit in R. It follows that f + bg is a unit in R[ [Xl]. 

LEMMA 3. Let R be a von Neumann regular ring. Then R has 1 in its 
stable range. Consequently, R[ [X]] has 1 in its stable range. 

Proof By Lemma 2, we have only to prove the first assertion. Suppose 
a, b E R and (a, b) = R. Then, there exist s, t E R such that su + tb = 1. Since 
R is von Neumann regular, there exist an idempotent e E R and a unit u E R 
such that u=eu. Thus, l-e=(l-e)(su+tb)=(l-e)tb and 
e + (1 - e) tb = 1. Therefore, a + u( 1 - e) tb = U, completing the proof. 

We now come to the principal result of this subsection. 

THEOREM 4. For a commutative ring R, the following conditions are 
equivalent and each implies that R is a von Neumann regular ring. 

(a) R[ [X] ] is an elementary divisor ring. 

(b) R[ [X] ] is an Hermite ring. 

(c) R[ [Xl] is a B&out ring. 

Proof: By virtue of Lemma 1 and Proposition 2, we have only to prove 
that (b) implies (a). In view of Lemmas 1 and 3, the proof will be finished 
once we prove 

LEMMA 4. Let S be an Hermite ring with 1 in its stable range. Then S is 
an elementary divisor ring. 

Proof: By the results in [ 163, it suffices to prove that A = [; t] can be 
diagonalized, where (a, 6, c) = S. Now, 1 in the stable range of S implies 
that there exist elements r, s E S such that b + ru + SC = u, a unit. Set 

P= 
1 S 

-CUP1 1 - csu-’ 1 and Q = ; 

Note that P and Q are invertible and PAQ is diagonal. 

Remark. In [.5] examples are given of von Neumann regular rings R 
such that R[ [ X] ] is not a B&out ring. 
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3. THE K-PROPERTY 

As we observed earlier, the K-property is a strong form of pole 
assignability. In the classical situation, when the entries of the system 
belong to a field, the K-property holds. In fact any semi-quasi-local ring 
has the K-property [ 11. On the other hand, the ring of integers does not, 
nor does R[X], R the real field. If C denotes the complex field, it is an 
open problem to determine whether or not @[Xl has the K-property. 

In this section we prove a theorem and give some examples that shed 
light on the problem of determining those rings that have the K-property. 
We begin with the main theorem of this section. 

THEOREM 5. Let R be a commutative ring with 1 in its stable range. Then 
R has the FC-property if and only if R has the GCU-property. 

The proof involves a succession of technical lemmas. 

LEMMA 5. Suppose R has 1 in its stable range and G is an n x m matrix 
over R with a unimodular in its image. Then, there exist an n x n invertible 
matrix A and an m x m invertible matrix B such that 

AGB= 

Proof By hypothesis, there exist s1 ,..., s,, ui ,..., u, E R such that 

and (ul ,..., u,) = R. 

Since R has 1 in this stable range, there exist rl,..., r,-, E R such that 
rlul + .*. +r,-,u,-,+u,=u, a unit. Set 

A,= 

’ 0 0 
. . 

L-l 
o’l ; 

rl ... rnpl 1 
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and note that 
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Thus, the last row of A, G is unimodular. Say * 
A,G= [ I. a, ... a,, 

Since 1 is in the stable range of R, there exist f,,..., t,- , such that 
tlal + . . + t,, , a, , + a, = u, a unit. Set 

1 
0 ? 
. 

B, = O 1 t,’ , I-L 0 01 . . 

and note that 

Set 

* 
A,GB, = 

L aI ... a,, I 0 I. 

and note that A,A, GB, is of the form * * 
LH 

* . * . . . * 1 
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Finally, it is clear that there exist invertible A, and B, such that 

A,A,A,GB,B,= 

Set A = A3A,A, and B= B, B,. 

0 
* -I 0 

.o...o 1 1. 
275 

Before continuing we need a definition. Let (F, G) be a system over R. 
Call a system (F, G) systems equiualent to (F, G), and write (F, G) - (p, G), 
if it is obtained from (F, G) by one of the following three transformations: 

(i) Ft+~=AFA~‘, Gwc=AG, for invertible A; 

(ii) FH F= F+ GK, G H G = G, for any K of suitable size; and 

(iii) FH P= F, G I--+ (? = GB, for invertible B. 

It is clear that systems equivalence is an equivalence relation. Moreover, if 
(F, G) - (F, G), then (F, G) is reachable (resp. feeds back to a cyclic vector) 
if and only if (p, G) is reachable (resp. feeds back to a cyclic vector). 

COROLLARY 1. Suppose R has 1 in its stable range and the 
GCU-property. Then any reachable system over R is systems equivalent to 
one of the form 

ProoJ Given a reachable system (F, G) select A and B as in Lemma 5 
so that 

AGB= 

0 
* 4 0 

0 0 1 . . . 

Then (F, G) - (F, c) = (AFA- ‘, AGB), and (p, G) can be put in the desired 

481/106/l-18 
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form by a suitable feedback-just replace (F, G) by the system (B+ (?K, c?), 
where 

K= [-a, .o. _,.I and [a,...~,] isthelastrowofF. 

LEMMA 6. Suppose F,, G,, G,, K,, K, are matrices over R of sizes 
(n-l)x(n-l), (n-1)x1, (n-l)x(m-I), lx@-1) and (m-1)x 
(n - I), respectively, (n, m > 2). Set 

F= 

Then, 

Proof: 

F, G, 
I 1 and G= 

(F,G)- ([WI, Gj. 
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-([*I. [&J-J [J-j) 
= ([ F,_,,,,+GI,, 1 :jG). 

A suitable feedback completes the proof. 

LEMMA 7. Suppose the n x n matrix F has a cyclic vector u E R”. Then, 
there exist an n x n invertible matrix A and a 1 x n matrix K such that 

ProoJ: By hypothesis, the matrix S = [u, Fu,..., 8”- ‘u] is invertible. 
Note that 

S-IFS= 

0 o -a,’ 

1 0 --al 
1 

Qf 

. . . 0 : 
0 

1 -a,-, 1 > 
where X” + a,, , X” ~ ’ + . . + a, is the characteristic polynomial of F. Note 
further that 

Set 

1 

S-‘u= O I.1 . . 

0 

T= 

al a2 ... a,-l 1 

a2 a3 

I:::::::::;:: 
a, l 

0 
a,-, 1 

4 



278 BREWER, KATZ, AND ULLERY 

and note that Tp ’ exists. Moreover, 

T-‘SplFST= 

0 1 0 ..’ 0 

-F 1 0 
0 

i\ 

-a0 -a, ..’ -Url-I I and 

Set A=STand K=[a,a,...~,~,]. Then 

0 0 ... 0 

T I,‘-‘u= 

as required. 

We are now in a position to prove Theorem 5. If R has the FC-property, 
it is clear from the definitions that R has the GCU-property (regardless of 
R having 1 in its stable range). 

Conversely, suppose R has 1 in its stable range and has the 
GCU-property. Let (F, G) be a reachable system over R with F n x n and G 
n x m. We proceed by induction on n. Since the case n = 1 is trivial, we may 
assume that n > 1 and that the Theorem holds for all positive integers 
k < n. Moreover, we may assume m > 1 (otherwise there is nothing to 
prove). 

By Corollary 1, we may assume that 

where F, and G2 are of sizes (n - 1) x (n - 1) and (n - 1) x (m - 1 ), respec- 
tively, and G, E R”-‘. By Lemma 1 in Eising [S], the system 
(F,, [G,, G2]) is reachable. Therefore, by induction, there is vector u E R” 
and an m x (n - 1) matrix K such that [G,, G,] u is cyclic vector for 
F, + [G,, G,] K. Write K= [K, 1K2] where K, is 1 x (n- 1) and K, 
is (m-l)x(n-1). Then F,+[G,,G,]K=F,+G,K,+G,K,. By 
Lemma 6, (F, G) is systems equivalent to 
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whereF=F,+G,K,+G,K, hasacyclicvector u=[G,,G~]uER”~‘. By 
Lemma 7, there exist an (n - 1) x (n - 1) invertible matrix A, and a 
1 x (n - 1) matrix k such that 

A-‘FA+A-‘uR= 

Note that 

0 1 
0 

0 1 

\ . . lb-1 0 
0’ 1 . 

0 . . . 0 

[Ly] [yj [j-T] = [qy!y 

and 

Write uR= [R, 1 R,], where i?, is 1 x (n - 1) and Kz is (m- 1) x (n- 1). 
Then, Ap’&=Apl[G,, G,] uK=A-‘G,E’, +A-‘G,R,. By Lemma6, 

(6 G) 
- A-‘FA+ A-‘G, K, + A-‘G2K, 

= ([ Apl~A;A-l.~ i A,“]; [Al)tz / 0’) 
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Write 

A-‘G,= [r;;,]. A-‘G,= [,..,.;mp,j. 

By Lemma 1 in [S], 

(A-‘FA+A~~‘ui?, [A ‘G,,A-‘G,]) 

O1 -I 0 0 1 . . . = li IllL 0 \\\\\ 0 1 
0 . . 

0, 

is reachable. This implies that (rn , , s, ,..., s, _ ,) = R. Since R has 1 in its 
stable range, there exist k, ,..., k,,_, ER such that r,,-,+k,s,+ ... + 
k m-IS* l = r, a unit. Set 

Then, 

I an m x n matrix. 

0 1 
0 1 O : 

o . . . Y 0 1 * 

0 0 ... 0 r 

0 0 ... 0 0 

which has the cyclic vector 
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in the image of 

This completes the proof of Theorem 5. 

COROLLARY 2. Let R be an Hermite ring with 1 in its stable range. Then 
R has the FC-property. In particular, a Bezout domain with 1 in its stable 
range has the FC-property. 

Proof. By Lemma 4, R is an elementary divisor ring. As noted earlier 
on, an elementary divisor ring has the UCU-property and, a fortiori, the 
GCU-property. The result follows from Theorem 5 and the fact that any 
B&out domain is an Hermite ring [16]. 

Remark. Even though the ring of integers h is a B&out domain and 
has the GCU-property, it is known that Z does not have the FC-property 
[6]. This shows that having 1 in the stable range cannot be deleted from 
the statements of Theorem 5 and Corollary 2. 

To apply Theorem 5 to construct examples of rings having the 
FC-property, we recall the definition of a class of rings which may not be 
familiar to all our readers. 

A commutative ring R is said to be a local-global ring if each polynomial 
over R (in several variables) admitting unit values locally, admits unit 
values. (See [9] and [IS] for more detail.) 

PROPOSITION 3. A local-global ring has 1 in its stable range as well as the 
GCU-property. In particular, local-global rings have the FC-property. 

Proof: Local-global rings clearly have 1 in their stable range since 
quasi-local rings do. Next, let G be an n x m matrix, let X, ,..., X,, Y, ,..., Y, 
be indeterminates over R, and set Y, f(X, ,..., A-,, Y, ,..., Y,,J= [X,...X,] G [ 1 ; . Ylll 
Then G has a unimodular vector in its image if and only if f has a unit 
value. If G is good, then f admits unit values locally since quasi-local rings 
clearly have the GCU-property. Thus, by the local-global property, f has a 
unit value. The last assertion follows immediately from Theorem 5. 

So, one way to give examples of rings having the FC-property is to give 
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examples of local-global rings. Some well-known local global rings are: 
semi-quasi-local rings, direct products of local-global rings, zero-dimen- 
sional rings, and the ring of all algebraic integers. Another known example 
which will be of special interest to us is the following. 

EXAMPLE. Let R be a commutative ring with X an indeterminate. Let 
S= { f~ R[X] 1 the content off is R}. Then R(X)= (R[X]), is a local- 
global ring. The proof is easy, but we include it anyway. 

Proof: Let T= R(X). To show that T is a local-global ring, it suffices to 
show that each polynomial in several variables over T with unit content 
has a unit value (since any polynomial with unit values locally has unit 
content). By the lemmas in [ 181, it suffices to consider polynomials in only 
one variable over T. Thus let f(Y) =C;+ (aJh,) Y’ where a,~ R[X], 
hi E S, and Y is an indeterminate over T. If f( Y) has unit content over T, 
there exists b E S such that (a,,..., a,) R[X] = bR[X]. Thus, the coefficients 
of the ai together generate R. If we let d= max{deg ui} + 1, then 
a,+a,Xd+ ... + Q~X”“‘E S. Therefore, S(Xd) is a unit in T. 

Now, R(X) has been a much studied ring in other contexts and a great 
deal is known about the relationship between the ideal structures of R and 
R(X); see [ 11, p. 4101, for example. For many clases of rings, R belongs to 
the class if and only if R(X) does; and moreover, the map MH M. R(X) is 
a homeomorphism from the maximal spectrum of R to that of R(X). 

In summary, these remarks show that just about any type of ring (e.g., 
UFD, integrally closed, regular, non-semi-quasi-local, etc.) can have the 
FC-property. Hence, the FC-property appears to be neither ideal-theoretic 
nor topological. 

4. PR~~FER DOMAINS WITH THE UCS-PROPERTY 

The motivation for this section comes from two sources. As we saw in 
the previous section, a Bezout domain with 1 in its stable range has the 
FC-property while the ring of integers does not have the FC-property. On 
the other hand, being an elementary divisor domain, Z does have the 
PA-property. It is an old open question whether or not each Bezout 
domain is an elementary divisor domain, but as noted in [4], a B&out 
domain is an elementary divisor domain if and only if it has the 
UC&property. (Over a Btzout domain, rank one projective modules are 
free and so the UCU and UCS properties are equivalent.) But a Bezout 
domain is an elementary divisor domain if and only if it has the 
“Simultaneous Basis Property” and so for Bezout domains the 
KU-property is equivalent to the Simultaneous Basis Property. In this 
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section we will formulate a notion of Simultaneous Basis Property for 
Priifer domains and prove that a Priifer domain D has it if and only if D 
has the KS-property. This will give a Priiferized version of elementary 
divisor domains and lead to a variation of the old problem: 

QUESTION. Does every Priifer domain have the UCS-property? 

A second motivation for this question comes from a beautiful theorem of 
Hautus and Sontag. In [lS], they prove that a Dedekind domain has the 
PA-property by showing that every Dedekind domain has the 
UCS-property. Thus, from the pole assignability standpoint, it is 
interesting to try to show that Priifer domains have the UCS-property. 

We have no counterexample to the question mentioned above, but 
believe that there must be one. A better problem is to determine which 
Priifer domains have the UCS-property. 

The first of our results deals with the UCU-property. 

LEMMA 8, Let R be a ring having the UCU-property. Then every 
homomorphic image S of R has the property that projective S-modules of 
constant finite rank are free. 

Proqf: By Theorem 1 it s&ices to show that projective R-modules of 
constant finite rank are free. By the UCU-property and induction on the 
rank, it suffices to show that for all n > 1, any locally nonzero summand of 
R” is the submodule generated by the columns of some unit content matrix. 
Let n B 1 and suppose R” = A OK where A is locally nonzero. Select 
column vectors v ,,..., v, E R” generating A, and let G be the matrix 
cv, ... v,]. If G does not have unit content, there exists a maximal ideal M 
of R containing the entries of G. Hence A E MR” and R” = K + MR”. Since 
K is finitely generated, Nakayama’s Lemma implies that K, = Rk. Thus 
A,,,, = 0, a contradiction. 

PROPOSITION 4. Let D be a Priifer domain. Then D has the 
UCU-property if and only $0 is an elementary divisor domain. In particular, 
if D is a Dedekind domain, then D has the UCU-property if and only if D is 
a PID. 

Proof. If D has the UCU-property, then, by Lemma 8, each finitely 
generated ideal of D is free; that is, a principal ideal. Hence, D is a Btzout 
domain. But a Bezout domain having the UCU-property is known to be an 
elementary divisor domain [4]. That elementary divisor domains have the 
UCU-property is also well known [6]. 

Remark. It is clear from Proposition 4 that a Dedekind domain D with 
nontrivial 2-torsion in its class group does not have the UCU-property. We 
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show, in fact, that it does not even have the weaker GCU-property: Sup- 
pose I is a nonprincipal ideal of D with principal square. It is known that 
I@ ZZ D* as D-modules. Thus I can be identified with the submodule of D2 
generated by the columns of a 2 x 2 matrix G, and the proof of Theorem 2 
in [3] shows that G is good. If D had the GCU-property, the image of G 
would contain a unimodular vector and be free. Hence, I would be free and 
therefore principal, a contradiction. 

In [20] it is shown that if R is a ring with stably free modules free and 
rank 1 projectives free, then the GCU and PA-properties are equivalent. 
For D as above, D has stably frees free and the PA-property, but not the 
GCU-property. Hence, the assumption on rank 1 projectives cannot be 
deleted. 

We return to the main focus of this section. Let D be a Bezout domain 
with M a finitely generated submodule of D”. Since D is a B&out domain, 
M is a free D-module, say of rank k. By a simultaneous basis for M and D” 
we mean a basis {x, ,..., x,,} for D” and ring elements d, ,..., dk such that 

{d ,x1,..., dkxk} is a basis for M. We say that D has the Simultaneous Basis 
Property if and only if for each positive integer n, D” and each finitely 
generated submodule M of D” have a simultaneous basis. 

As I. Kaplansky pointed out to us, a Bezout domain has the 
Simultaneous Basis Property if and only if it is an elementary divisor 
domain. (The verification of this is straightforward but nonilluminating; so, 
we omit it.) Thus, for a Bezout domain D the following are equivalent: D is 
an elementary divisor domain; D has the Simultaneous Basis Property; D 
has the UCU-property. We proceed to define an analogous “Simultaneous 
Basis Property” for Prufer domains and show that it is equivalent to the 
UCS-property. 

Let D be a Prtifer domain with M a finitely generated submodule of D”. 
Since D is a Priifer domain, M is a projective D-module, say of constant 
rank k. By a simultaneous basis for M and D” we mean a collection of rank 
1 projective submodules P, ,..., P,, E D” and ideals I, 2 . . . 2 I, of D such 
that D”= P, @ ... @P,, and M=Z,P,@ ... @Z,P,. We say that D has 
the Simultaneous Basis Property if and only if for each positive integer n, 
D” and each finitely generated submodule M of D” have a simultaneous 
basis. 

Remark. It is known that Dedekind domains have the Simultaneous 
Basis Property (see [7, Theorem 22.121). 

Remark. A finitely generated submodule M of D” is said to have unit 
content if and only if any matrix whose columns generate M has unit con- 
tent. Using the characterization of rank 1 projective modules given in [ 121, 
it is easily checked that D has the UCS-property if and only if each finitely 
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generated submodule of D” with unit content contains a rank 1 projective 
summand of D”. 

THEOREM 6. Let D be a Prtifer domain. Then, D has the UCS-property if 
and only if D has the Simultaneous Basis Property. 

Proof: First suppose D has the UCS-property and let M be a nonzero 
finitely generated submodule of D” (n 2 1). If K is any finitely generated 
submodule of D”, let c(K) denote the content of K, that is the content of 
any matrix whose columns generate K. Set J, = c(M). Since D is a Priifer 
domain, J, is invertible and M= J,(J; ‘M). Since J; ‘M is a finitely 
generated submodule of D” with unit content, the UCS-property yields a 
rank 1 projective summand P, of D” contained in J,-‘M. Write 
D”=P,@N,. Thus J;‘M=P,@M, (where M,=N,nJ;‘M and 
M= J, P, @J, M,. If J, M, #O, set J, = c(M,). As above, J, is invertible 
and Jim ‘M, contains a rank 1 projective summand P, of D”. Therefore, 
D”=Pl@P2@N, and M=JlPl@JlJ2P2@J1JZMz where M,= 
N, n J,‘M,. Continuing in this way, we eventually reach k <n with 
J,J,...JkMk=O, D”=P,@ ... @Pk@Nk, and M=J,P,@ ... 0 
J, J, . . . JkPk. Setting I, = J, J, . . J, (1 d r d k), and observing that (since D 
is a Priifer domain) N, is zero or a direct sum of rank 1 projectives, we 
conclude that D has the Simultaneous Basis Property. 

Conversely, suppose D has the Simultaneous Basis Property and let G be 
an n x m matrix over D with unit content. Let ME D” be the submodule 
generated by the columns of G. Thus, there exist rank 1 projective sum- 
mands P, ,..., P, of D” and ideals I, 2 ’ .’ 2 I, of D such that 
M=I,P,~~~~~I,P,.SinceMhasunitcontent,I,=RandsoI,P,=P,. 
Therefore M contains a rank 1 projective summand of D” and we conclude 
that D has the UCS-property. 

We close by indicating how to obtain non-Noetherian, non-semi-quasi- 
local Prtifer domains with the UCS-property. One way to do this is to use 
a nice theorem of Levy [ 171 which we now present. Let D be a one-dimen- 
sional Priifer domain with { Mi} the family of all maximal ideals of D. We 
say that D has finite character if each nonzero element of D belongs to only 
finitely many M;s. The following theorem extends Corollary 22.14 of [7]. 

THEOREM. Let D be a one-dimensional Prtifer domain offinite character. 
Then D has the UCS-property. 

We will not give a proof of the theorem since it is to appear elsewhere. 
We should add that in [14, Proposition 1.21, Heinzer shows how to 
actually construct (non-Noetherian) domains of the type referred to in 
Levy’s theorem. Moreover, the domains constructed in [14] are not 
Bezout domains. 
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